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C16Te2N2S and CI2Br4Te2N2S are prepared by oxidation of C 1 2 m e  with CIS or Br2, respectively; reduction of 
C12Br4Te2N2S with Ph3Sb gives B r 2 m e ,  which on treatment with AgAsF6 in  liquid SO2 forms 
[Brfi%i%?e]+[AsF6]-; bromination of B r 2 m e  yields the corresponding Br6Te2N2S; attempts to prepare a 
dicationic five-membered ring system starting from C l z f e " t e  gives the first Te containing dicationic 
eight-membered chalcogen-nitrogen system [feNSNTeNShl]2+ [AsF6-]2; reaction of CI6Te2N2S with 
Me3SiN=S=NSiMe3 leads to  C14Te2S2N4. 

Recent investigations of the chemical behaviour of Se(NS0)2 
towards tellurium containing Lewis acids such as Te& (X = F, 
C1) or TeX3+ (X = C1) have proved Se(NS0)2 to be a suitable 
precursor for the synthesis of tellurium-containing chalcogen- 
nitrogen systems.1-3 Such compounds display novel cyclic 
structures possessing no analogues in sulfur-nitrogen chem- 
istry .213 High-yield synthesis of C16Te2N2S2 allows access to 
further interesting compounds such as Cl2=e and 
[cld%i%i+e]+[AsF6]-, which contain x-delocalisati~n.~ 

We report reactions of bicyclic C16Te2N2S and 
C 1 2 m e ,  respectively, leading either to tellurium-con- 
taining chalcogen-nitrogen ring-systems or to new C16Te2N2S- 
related compounds. 

Whereas reduction of C16Te2N2S with SbPh3 yields 
C 1 2 m e , 4  chlorination with C12 in CH2C12 provides 
C16Te2N2S again in quantitative yield (Scheme 1). Oxidation 
of Cl2=e with Br2 (2  equiv.) is also performed 
successfully yielding di-~-chloro-tetrabromo-1~2Br,2~2Br-p- 
sulfurdiimidato (2-)-1~N,2~N'-ditelluriurn(Iv) 1 (Scheme 2). 

The vibrational spectra of 1 are in good agreement with 
those for C16Te2N2S.2 It seemed reasonable to assume 
C2,-symmetry for 1. Thus the two chlorine atoms must take 
the bridging positions as shown in Scheme 2. Compound 1 
represents a high-melting yellow powder (195 "C decomp.), 
which is insoluble in CH2C12 and toluene. 

Its reduction with SbPh3 ( 2  equiv.) in CH2C12 selectively 
gives 3,3-dibromo-l,3h4,4,2,5-thiaditelluradiazole 2 an air- 
sensitive brown powder, which is insoluble in CH2C12 and in 
SO, and does not explode on mechanical shock or heating [mp 
187°C (decomp.)] (Scheme 3). The 
corres ond very well with those 
C12 T - 5  eNSN e.1 

On treatment with AgAsF6 in SO2 2 can be converted to the 
soluble, dark-red, crystalline 3-bromo-l,3,4,2,5-thiaditellura- 
diazolium hexafluoroarsenate 3 (Scheme 4). It showed no 
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tendency to explode on grinding or on heating during melting 
[mp 192°C (decomp.)]. The IR and Raman spectra are 
comparable with those of [ C l m e ] + [ A S F 6 1 - . 4  

When 2 is oxidised with Br2 (2 equiv.) in CH2C12, 
the perbrominated derivative di-p-bromo-tetra- 
bromo- 1 ~2Br,2~2Br-p-sulfurdiimidato(2 -)- 1 ~N,2~N 'd i t e l -  
lurium(1v) 4 is obtained (Scheme 5 ) .  Like 1, compound 4 has 
vibration spectra very similar to that of C16Te2N2S,2 it is a 
yellow powder insoluble in common solvents [mp 180°C 
(decomp.)]. 

Attempts to prepare a tellurium-containing dicationic 
five-membered ring species [-e]2+ ,5-8 resulted in the 
novel cage like lh462,5h462,3h3,7h3,2,4,6,8-dit hiaditellura- 
tetrazocinium bis(hexafluor0arsenate) 5 .  It is obtained as a 
yellow, crystalline product by reaction of Cl2=e with 
excess AsFs in SO2 (Scheme 6). Vibrational spectroscopic 
bands are tentatively assigned to N=S=N stretching modes 
(1099m, 1059w, 1038m, and 990w cm-1). The solubility in SO2 
allowed additional characterisation by 125Te NMR spectro- 
scopy. 

A single crystal of 5 was examined by X-ray crystallography 
and despite the moderate nature of the data its structure could 
be elucidated as an eight-membered ring with a Te-Te 
cross-ring bond. The three coordinate tellurium atoms, which 
probably carry most of the positive charge display a pyramidal 
environment as illustrated in Fig. 1.t The structure shows no 
secondary S-S bonding and so represents a partially opened 
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Fig. 1 The structure of the dication Te2S2N42+ in 5. Bond distances 
(A) and angles ( O ) :  Te(1)-Te(2) 2.881(4), Te(1)-N(l) 2.044(32), 
Te( 1)-N( 4) 2.045( 33), Te( 2)-N( 2) 2.036( 3 1) , Te( 2)-N( 3) 1.956( 30), 

S(2)-N(4) 1.509(28); Te(2)-Te(l)-N(l) 87.4(7), Te(2)-Te( 1)-N(4) 
87.5(6), N( 1)-Te( 1)-N(4) 96.6( 14), Te( l)-Te(2)-N(2) 85.2(6), 
Te(l)-Te(2)-N(3) 85.3(7), N(2)-Te(2)-N(3) 97.5(13), N(1)-S( 1)- 
N(2) 121.2(21), N(3)-S(2)-N(4) 122.0(20), Te(1)-N(1)-S(1) 
121.4( 20), Te( 2)-N( 2)-S ( 1) 123.7 ( 17), Te (2)-N( 3)-S( 2) 125.5( 17), 
Te( 1)-N( 4)-S(2) 119.3( 17). 

S( 1)-N( 1) 1.507(21) , S( 1)-N(2) 1.508(26), S(2)-N(3) 1.506(26) , 

three-dimensional cage cf. unsaturated PYN4S2-ring 
systems.9Jo 

The structure of C14Te2S2N4 6, a product obtained by 
reaction of C16Te2N2S with Me3SiN=S=NSiMe3 in CHzC12 is 

NMR spectroscopic investigation are in good agreement with 

an eight-membered ring having two slightly different orien- 
tated tellurium atoms. 

We are thankful for the Ministerium fur Wissenschaft und 
Forschung (NRW) and the Deutsche Forschungsgemeinschaft 
for financial support. 

Received, loth September 1993; Corn. 3l0.54481 

Footnote 
t Crystal data for: As2F12N4S2Te2. Yellow prism, 0.45 x 0.50 x 0.42 
mm, monoclinic, space group P2Jc, a = 14.153(3), b = 8.210(2), c = 
13.666(3) A, fJ = 11 1.96(3)", U = 1472.7(6) A 3 , Z  = 4, M = 753.2, D, 
= 3.397 g ~ m - ~ ,  absorption coefficient = 8.823 mm-l, F(OO0) = 1352. 
Solution and refinement: Siemens SHELXTL PLUS (VMS), direct 
methods solution, full-matrix least-squares refinement, Zw(F,-F,) ,2 
hydrogen atoms riding model, fixed isotropic U ,  w-1 = a2(F) + 
0.0001F12 disordered hexafluoroarsenate, S=N distances fixed (1.51 
A), 119 parameters refined, final R indices (obs. data) R = 8.75%, w R  
= 8.98% , goodness-of-fit 2.75. Data collection: Siemens P4 diffrac- 
tometer, Mo-Kcw ( h  = 0.71073 A), 293 K, highly orientated graphite 
crystal monochromator, 28 = 3.0 to 45.0°, o scan-type, scan-range 
(w) = 2.0", -15 < h < 14, 0 d k < 8, 0 S I d 14, 1922 reflections 
collected, 1903 independent reflections, 888 [ F  > 6.0a(F)] observed 
reflections, semiempirical absorption correction. Atomic coordinates, 
bond lengths and angles, and thermal parameters have been deposited 
at the Fachinformationszentrum Karlsruhe , See Information for 
Authors, Issue No. 1. 
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