Electrocrystallisation and Crystal Structure Determination of Ph₄PC₆₀·Ph₄PCl

Uta Bilow and Martin Jansen*

Institut für Anorganische Chemie, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

Ph₄PC₆₀·Ph₄PCI is prepared by electrocrystallisation and its structure determined by single crystal structure analysis.

Since the discovery of the fullerenes¹ their chemical behaviour has been studied extensively.² Although investigations have shown the possibility of their chemical³ and electrochemical reduction in solution⁴ (*i.e.* C₆₀ down to C₆₀⁶⁻) only few reports on fullerides as crystalline solids have appeared. Wudl *et al.* describe the synthesis of Ph₄PC₆₀·(Ph₄PCl)₂, the composition of which was reportedly determined only by elemental analyses.⁵ A second paper also refers to the same compound.⁶ Another solid containing C₆₀⁻ obtained electrochemically is [(Ph₃P)₂N]C₆₀.⁷ Here we report the novel fulleride Ph₄PC₆₀·Ph₄PCl and its single crystal structure determination.

Coarse crystalline samples were prepared by electrocrystallisation at ambient temperature. Direct current electrolysis was carried out on a solution of 1,2-dichlorobenzene containing 10^{-3} mol dm⁻³ C₆₀ and 10^{-2} mol dm⁻³ Ph₄PCl, applying 2 V to platinum wires (10 mm² surface). After 24 h black, air-stable, tetragonal bipyramidal crystals of [(C₆H₅)₄P]C₆₀·[(C₆H₅)₄P]Cl formed. Magnetic measurements† showed the presence of unpaired spins.

Single crystal structure analysis[‡] confirmed the analytically determined composition. Except for the fulleride anion all atoms (including hydrogen) are in fully occupied positions with thermal parameters as expected for an ordered molecular crystal structure. The packing of the complex cations provides sites which may be occupied by C_{60}^- in two different orientations. These are, however, geometrically equivalent, and thus have the same potential energy and are occupied to the same extent. Attempts to refine the structure assuming twinning failed. The disorder must therefore be local, either static or dynamic, the latter being most probable. Refinement using a split atom model yielded low residual electron densities and reasonable temp. factors.

Fig. 1 Unit cell of Ph_4PC_{60} , Ph_4PCl , showing the pseudo-cubic sublattice of the phosphorus atoms. For clarity the phenyl rings are omitted.

Fig. 1 provides a view at the unit cell of Ph_4PC_{60} · Ph_4PCl . The barycentres of the constituents form a CsCl-like structure by substituting Cs⁺ for (Ph_4P)⁺ and Cl⁻ for C₆₀⁻ or Cl⁻. The approximately cubic primitive lattices of the cations and anions, respectively, have the dimensions 9 × 9 × 10 Å. Neighbouring P₈-cubes are occupied by C₆₀⁻ and Cl⁻ in an alternating fashion.

The considerable difference in the size of the anions is compensated for by the orientation of the phenyl groups: they are directed towards the centres of the P₈-cubes occupied by chlorine (*cf.* Fig. 2), while the phenyl rings coordinating the fulleride anion lie outside the P₈-cube containing C_{60}^{-} . The shortest distances from fulleride to phenyl carbons are

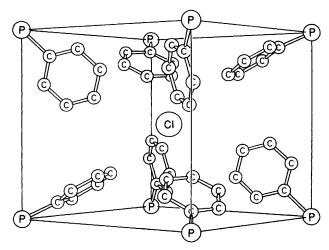


Fig. 2 A view upon the arrangement of phenyl groups around chlorine with the P-phenyl-bonds pointing towards the anion

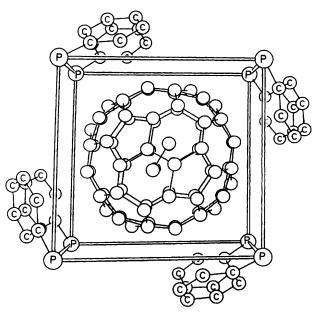


Fig. 3 The coordination of the fulleride anion by the phenyl groups is shown. The phenyl rings lie outside this P_8 -cube and are oriented in a face to face manner with respect to the fulleride's hexagons.

3.83–4.06 Å, due to eight of the hexagons of the fulleride being oriented face to face with eight phenyl rings, as can be seen in Fig. 3 (dihedral angles being $4.8-6.0^\circ$). Although there are only two orientations for the fulleride, no reliable bond lengths for the fulleride anion can be obtained. This is a consequence of the interchange of the hexagons and pentagons upon switching between the two orientations.

Financial support by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Forschung und Technologie is gratefully acknowledged.

Received, 7th September 1993; Com. 3/05369E

Footnotes

[†] Magnetic measurements were carried out between 2 and 300 K on a SQUID magnetometer MPMS 5, Quantum Design, and indicate two phase transitions at 120 and 240 K, respectively.

[‡] Crystal data for C₁₀₈H₄₀P₂Cl; M = 1434.79, tetragonal, I4/m, a = b = 12.5731 (9), c = 20.1415 (25) Å; T = 293 K, V = 3184.0 Å³, Z = 2, F(000) = 1470, Cu–K α , $\mu = 1.49$ mm⁻¹; data were collected on an Enraf-Nonius CAD4 diffractometer, 14799 reflections measured, 1742 independent with $I \ge 2\sigma(I)$ used, 174 refined parameters; R1 = 5.14, wR2 = 10.95, final difference Fourier = 0.39 Å³. Cell constants were determined from X-ray powder data using 35 indexed reflections; calculated and observed X-ray powder diffraction pattern are in

accordance. Atomic coordinates, bond lengths and angles, and thermal parameters, have been deposited at the Cambridge Crystallographic Centre. See Information for Authors, Issue No. 1.

References

- 1 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, *Nature*, 1985, **318**, 162; W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, *Nature*, 1990, **347**, 354.
- 2 R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685.
- 3 R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl and R. E. Smalley, J. Phys. Chem., 1990, 94, 8634.
- 4 P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Am. Chem. Soc., 1991, 113, 1050; D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufler, L. P. F. Chibante and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 4364; D. Dubois, K. M. Kadish, S. Flanagan and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 7773; Q. Xie, E. Perez-Cordero and L. Echegoyen, J. Am. Chem. Soc., 1992, 114, 3978; Y. Ohsawa, T. Saji, J. Chem. Soc., Chem. Commun., 1992, 781.
- 5 P.-M. Allemand, G. Srdanov, A. Koch, K. Khemani, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Am. Chem. Soc., 1991, 113, 2780.
- 6 B. Miller and J. M. Rosamilia, J. Chem. Soc., Faraday Trans., 1993, 89, 273.
- 7 H. Moriyama, H. Kobayashi, A. Kobayashi and T. Watanabe, J. Am. Chem. Soc., 1993, 115, 1185.