Electrophilic Ligand Abstraction from Electron-rich Iridium(1) Complexes with Me₃SiOTf; Evidence for Direct Ligand Attack

Michael Aizenberg and David Milstein*

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel

 Me_3SiOTf ($Tf = CF_3SO_2$) is a useful reagent for electrophilic abstraction reactions involving electron-rich complexes $RIrL_n$ (R = H, CI, Me, Ph; $L = PMe_3$, PEt_3); direct external attack of Me_3Si^+ on R is probably involved.

Generation of vacant coordination sites by ligand abstraction is commonplace in inorganic and organometallic chemistry. Normally, this abstraction is based on generation of insoluble salts, such as when Ag^+ or Tl^+ are used for halide abstraction. However, with electron-rich, low-valent complexes, this may be a problematic procedure because of competing electron transfer processes. Thus, in our attempt to abstract the chloride ligand from $Ir(PEt_3)_3Cl \ 1$ with Ag^+ , immediate formation of silver metal and uncharacterized iridium complexes took place. By contrast, reaction of 1 with trimethylsilyl triflate, Me₃SiOTf 2^1 at room temperature in benzene results in immediate quantitative formation of the novel iridiacycle 3^+ and Me₃SiCl‡ [eqn(1)].

It is very likely that 3 is formed by ligand metallation in the unobserved intermediate $Ir(PEt_3)_3+OTf^-$.

The reaction is not limited to halide abstraction. Facile dealkylation to form Me_4Si^{\ddagger} and $Ir(PMe_3)_4$ +OTf⁻ 4§ is observed when the saturated $MeIr(PMe_3)_4^2$ is reacted with 2 under similar conditions [eqn. (2)]. The analogous dearylation involving the unsaturated complex PhIr(PMe_3)_3³ is slow, taking hours at room temperature to reach completion and an added equivalent of PMe₃ is required for quantitative formation of 4 and PhSiMe₃.[‡]

$$\operatorname{RIr}(\operatorname{PMe}_3)_n \xrightarrow{2} \operatorname{Ir}(\operatorname{PMe}_3)_4 + \operatorname{OTf}^- + \operatorname{RSiMe}$$
(2)

5;
$$R = Me, n = 4$$

6; $R = Ph, n = 3$

Metal hydride complexes are also reactive. Reaction of the saturated HIr(PMe₃)₄⁴ **7** with **2** leads to the remarkably sterically congested hydrido silyl complex **8**.¶ The reaction is relatively slow at room temperature, showing 30% conversion after 2 h and taking 24 h to reach completion [eqn(3)].

Mechanistically, these reactions may proceed via two main pathways: (a) electrophilic attack at the electron-rich metal centre followed by Si-X (X = Cl, Me, Ph) reductive elimination, (b) direct electrophilic attack of Me₃Si⁺ on the ligand. It is likely that an η^2 -SiR complex is formed, which then undergoes Si-H oxidative addition or dissociation of Me₃SiR (R = Ph, Me, Cl) (Scheme 1). η^2 -Si-H complexes are well known.⁵

We firmly believe that route (b) is operative. The observed trend of relative rates of the reaction with 2, $Ir(PEt_3)_3Cl >$ $MeIr(PMe_3)_4 > PhIr(PMe_3)_3 > HIr(PMe_3)_4$ is not the expected one for electrophilic attack on the metal. Thus, $PhIr(PMe_3)_3$ is expected to be more reactive than $Ir(PEt_3)_3Cl$

in such a process on both steric and electronic grounds. PhIr(PMe₃)₃ is also expected to be more reactive than the saturated MeIr(PMe₃)₄. The lower reactivity of HIr(PMe₃)₄ as compared with MeIr(PMe₃)₄ probably reflects the lesser accessibility of the hydride ligand; attack at the metal centre of the saturated HIr(PMe₃)₄ is highly unlikely. Indeed, PMe₃ dissociation from this complex is very difficult.⁴

In addition, the Ir^{III} complexes that would be formed by attack at the metal, $(PMe_3)_4Ir(R)(SiMe_3)^+$ are expected to be stable towards Si-R reductive elimination at 25 °C. For example, heating at 100 °C is required in order to cause reductive elimination from *mer*-(PMe_3)_3Ir(H)(SiR_3)(Me) (R = Et, Ph, EtO).⁶ Also, $(PMe_3)_4IrMe(H)^+$ is thermally stable.²

The reagent Me_3SiOT_f is very useful in organic chemistry⁷ and has been utilized with metal complexes as well,⁸ although to a much lesser extent. This work clearly demonstrates that it is of particular advantage for electrophilic ligand abstraction from electron-rich metal systems, where competing electron transfer processes may otherwise prevail. Since, as we show here, the bulky Me_3Si^+ most likely attacks the ligand directly, coordinative unsaturation at the metal centre is not required.

This research was supported by grant number 89-00374/1 from the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Received, 31st August 1993; Com. 3/05220F

Footnotes

† Spectral data for 3: ¹H NMR (C₆D₆): δ –29.57 (dt, J_{H-P_1} 11.5, J_{H-P_2} 14.5, J_{H-P_3} 14.5 Hz, 1 H, Ir–H); 0.8–0.9 (m, 24 H, PCH₂CH₃); 1.5, 1.9 (multiplets, 16 H, PCH₂CH₃); 3.96 (m, 1 H), 3.57 (m, 1 H); 2.57 (m, 1 H); 1.23 (m, 1 H); C-Hs of the ring. ³¹P{¹H} NMR (C₆D₆): δ –5.70 (t, J 11.0 Hz, 1 P, PEt₃ trans to CH₂); -6.09 (dd, $J_{P-P (trans)}$ 335.6, $J_{P-P (cis)}$ 10.8 Hz, 1 P, PEt₃ trans to P); -77.05 (dd, $J_{P-P (trans)}$ 335.6, $J_{P-P (cis)}$ 11.3 Hz, 1 P, ring P).

[‡] These silyl compounds were detected by ¹H NMR and GC-MS.

^{§ &}lt;sup>31</sup>P and ¹H NMR of 4 are essentially the same as reported for $Ir(PMe_{3})_{4}$ +PF₆^{-.2}

If $M(_{3})_{4}$ 11 6 .- ¶ Spectral data for 8: ¹H NMR (C₆D₆): δ -14.4 (ddt, $J_{H-P (trans)}$ 109.6, $J_{H-P (cis)}$ 13.8, $J_{H-P (cis)}$ 20.7 Hz, 1 H, Ir-H); 0.32 (d, J 2.1 Hz, 9 H, SiMe₃); 1.32 (d, J 7.4 Hz, 9 H, PMe₃); 1.33 (vt, J 3.2 Hz, 18 H, 2PMe₃ trans); 1.55 (d, J 7.3 Hz, 9 H, PMe₃). ³¹P{¹H} NMR (C₆D₆): δ -67.9 (dt, J_{4} 22.6, J_{t} 25.4 Hz, 1 P); -63.6 (dt, J_{4} 22.7, J_{t} 20.9 Hz, 1 P); -56.5 (dd, J_{1} 25.3, J_{2} 20.6 Hz, 2 P).

412

References

- 4 D. L. Thorn and T. H. Tulip, Organometallics, 1982, 1 1580.

- D. L. Thom and T. H. Tulip, Organometatics, 1362, 14560.
 U. Schubert, Adv. Organomet. Chem., 1990, 30, 151.
 M. Aizenberg and D. Milstein, Angew. Chem., in the press.
 Reviews: R. Noyori, S. Murata and M. Suzuki, Tetrahedron, 1981, 37, 3899; H. Einde, D. Domsch, H. Feger, U. Frick, A. Götz,

H. H. Hergott, K. Hofman, W. Kober, K. Krageloh, T. Oesterle, W. Steppan, W. West and G. Simchen, Synthesis, 1982, 1. 8 E.g.: K.-H. Griessmann, A. Stasunik, W. Angerer and W. Malish,

J. Organomet. Chem., 1986, **303**, C29; S. J. Holmes, R. R. Schrock, M. R. Churchill and H. J. Wasserman, *Organometallics*, 1984, **3**, 476; M. Brookhart, W. B. Studabaker and M. Bet-Hamphrey, *Organometallics*, 1989, **8**, 132; T. Don Tilley, *J. Am. Chem. Soc.*, 1985, 107, 4084; N. Dufour, A.-M. Caminade, M. Basso-Bert, A. Igan and J.-P. Majoral, Organometallics, 1992, 11, 1131.