Macropolyhedral Boron-containing Cluster Chemistry. The Isolation and Characterisation of the Eighteen-vertex Azaborane anti-[9-NB₁₇H₂₀][†]

Tomáš Jelínek,^{a,b} John D. Kennedy^a and Bohumil Štíbr^b

^a School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

^b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Řež near Prague, The Czech Republic

Reaction of *n*-butyInitrite with anti- $B_{18}H_{22}$ yields the first macropolyhedral cluster azaborane, eighteen-vertex anti-[9-NB₁₇H₂₀].

Although carbaborane cluster chemistry is extensive, the chemistry of polyhedral boron-containing compounds that incorporate other first-row main-group elements as cluster constituents is poorly developed. Thus, there is but one example of a contiguous oxaborane,¹ beryllaborane chemistry is essentially limited to two polyhedral types,² and, until recently, azaborane chemistry was also only sparsely reported.³ There is now, however, a contemporary accelerating

Fig. 1 Representation of the proposed molecular structure of *anti*-[9-NB₁₇H₂₀] showing the numbering scheme as *nido*-decaborano-[6',7':5,6]-*nido*-9-azadecaborane (compare ref. 11)

interest and activity in azaboranes.^{3,4} Previously the only unsubstituted cluster azaborane building-blocks described were nine-vertex *arachno*-4-NB₈H₁₃ (structure I),⁵ ten-vertex *nido*-6-NB₉H₁₂ (structure II),⁶ and ten-vertex *closo*-1-NB₉H₁₀ (structure III),⁷ but this short series has now recently been augmented by the ten-vertex diazaborane *arachno*-6,9-N₂B₈H₁₂ (structure IV),⁸ eleven-vertex *nido*-7-NB₁₀H₁₃ (structure V),⁹ and twelve-vertex *closo*-1-NB₁₁H₁₂ (structure VI).¹⁰ We are interested in developing larger contiguous azaborane building blocks as part of a chemistry that is precursive to tailored boron-containing ceramics and precursive to tailored macromolecules for possible nanotechnological applications, and in this context we now report the isolation of the larger eighteen-vertex 'macropolyhedral' azaborane *anti*-[9-NB₁₇H₂₀],[†] which also constitutes the first

Fig. 2 Stick diagrams of the chemical shifts and relative intensities in the ¹¹B NMR spectra of (from top to bottom): (a) nido-B₁₀H₁₄, (b) anti-B₁₈H₂₂,¹¹ (c) anti-[9-NB₁₇H₂₀] (this work), and (d) nido-6-NB₉H₁₂ (assignment as in ref. 14). Hatched lines join equivalent positions among the subclusters (note that because of numbering conventions nido-6-NB₉H₁₂ and the {nido-9-NB₉} subcluster of NB₁₇H₂₀ have different numberings). The shielding pattern of the {B₁₀} subcluster of NB₁₇H₂₀ is readily traced to that of anti-B₁₈H₂₂, which in turn is readily traced to that of nido-B₁₀H₁₄ (upper two diagrams). Likewise the shielding pattern of the {NB₉} subcluster can be readily traced to that of nido-6-NB₉H₁₂ (lower diagram); the magnitude of the differentiation of the (1,3), (5,7), and (8,10) resonances as well as the other shielding changes are very similar for both B₁₀H₁₄ and NB₉H₁₂ when they are compared to the {B₁₀} and {NB₉} subclusters of B₁₈H₂₂ and NB₁₇H₂₀.

contiguous macropolyhedral heteroborane to be unequivocally characterised.12

We have made use of the recently developed organyl nitrite route for the placement of nitrogen vertices in boron-containing clusters under homogeneous reaction conditions.¹³ Treatment of anti-B₁₈H₂₂ (ca. 1.4 mmol) with a threefold excess of n-butylnitrite, BuONO (ca. 0.5 cm³), either in diethyl ether (20 cm³) at room temp., or in benzene (30 cm³) at reflux temp., for 24 h, followed by repeated chromatography, and then recrystallisation from hot hexane, gave anti-[9-NB₁₇H₂₀] (Fig. 1) as a colourless, reasonably air-stable, crystalline solid in 15% (diethyl ether route) or 10% yield (benzene route). The compound (structure VII) consists of $\{nido-B_{10}\}$ and $\{nido-6-NB_9\}$ subclusters fused with two-boron edges in common (structure VIII), and was readily characterised as such by mass spectrometry and NMR spectroscopy.‡ In particular the parallels in NMR ¹¹B shielding behaviour among the $\{NB_9\}$ and $\{B_{10}\}$ subclusters, and the parent *nido*- $B_{10}H_{14}$ and *nido*-6-NB₉H₁₂ cluster models, are very useful in this identification (Fig. 2).

The chromatography required acidic conditions, and was carried out on a silica gel column that had been prepared using an acetic acid-hexane-dichloromethane mixture (5:4:1) as the initial gel-particle suspension medium. The viscous residue that remained after evaporation of the solvents, etc., from the reaction mixture was extracted with a hexanedichloromethane mixture (3:1; 2×20 cm³), the extract filtered, and then separated chromatographically using hexane-dichloromethane (3:1) as the liquid phase. The major fraction (analytical $R_{\rm F}$ 0.27; 3:1 hexane-dichloromethane; silica gel G on analytical foil-backed sheets that had been treated with acetic acid and dried in air) was collected and rechromatographed using hexane (100%) as the liquid phase to yield anti-[9-NB₁₇H₂₀] (analytical $R_F 0.10$; 100% hexane) as a white solid.

So far these chromatographic conditions for the separation of products in this macropolyhedral azaborane system appear to be quite critical. NMR spectroscopy on as yet unseparable crude fractions suggests other interesting macropolyhedral species which we hope to be able to purify and to report upon in the future.

Contribution No. 43 from the Řež-Leeds Anglo-Czech Polyhedral Collaboration (ACPC). We thank the Royal Society, The Academy of Sciences of the Czech Republic (Grant No. 43204), and Borax Research Ltd for support, and Drs R. A. Walker and D. M. Wagnerová for helpful cooperation.

Received, 6th December 1993; Com. 3/07199E

Footnotes

- [†] Using the IUPAC-recommended nomenclature for the anti-B₁₈H₂₂ system (see ref. 11), the formal naming is nido-decaborano[6',7':5,6]nido-9-azadecaborane. Note that the compound is chiral; the other enantiomer is numbered as the [5',6':6,7]-9-aza isomer.
- ‡ Selected spectroscopic data: NMR data as follows {ordered as:

assignment $\delta({}^{11}\text{B})/\text{ppm}$ [$\delta({}^{1}\text{H})/\text{ppm}$ in square brackets]} for CDCl_3 solution at 294-303 K: azadecaborane subcluster: BH(1) -10.4 [+2.53], BH(2) -22.41 [+0.76], BH(3) -1.2 [+3.00], BH(4) ca. 32.9 [+1.24 or -0.25], BH(7) -28.9 [+1.68], BH(8) +5.2 [+3.75], NH(9)- [+6.24 (broad singlet)], BH(10) +14.2 [+4.39]; unsubrogated decaborane subcluster: BH(1') +16.4 [+3.91], BH(2') ca. -32.9[-0.25 or +1.24], BH(3') +0.6 [+2.94], BH(4') -38.3 [+0.53], BH(5') -8.3 [+3.00], BH(8') +7.7 [+3.94], BH(9') +6.5 [+3.49], BH(9') +6.5 [+3.49], Cheve and Ch BH(10') -6.6 [+2.90]; common atoms: B(5/6') -2.3 [-], B(6/7') μ +8.8 [-]; bridging H atoms: μ H(5', 5/6') -2.04, μ H(7, 6/7') -1.50, μ H(8',9') -0.83, μ H(9',10') -2.77. Mass spectrometry (70 eV EI ionisation) gave m/z_{max} 221 corresponding to the highest isotopomer of the proposed molecular ion. NMR assignments by [11B-11B]-COSY experiments and ¹H-{¹¹B(selective)} spectroscopy.

References

- 1 A. Ouassas, B. Fenet and B. Frange, Abstracts Eighth International Meeting on Boron Chemistry (IMEBORON VIII), Knoxville, Tennessee, USA, July 11-15 1993, abstract no. CA13, p. 46; Current Topics in Boron Chemistry, ed. G. Kabalka, RSC, Cambridge and London, 1994, in the press; A. Ouassas, C. R'Kha, H. Mongeot and B. Frange, Inorg. Chim. Acta, 1991, 180, 257
- D. F. Gaines and J. H. Morris, J. Chem. Soc., Chem. Commun., 1975, 626; J. C. Calabrese, D. F. Gaines, S. J. Hildebrandt and J. H. Morris, J. Am. Chem. Soc., 1976, 98, 5489; D. F. Gaines and J. L. Walsh, J. Chem. Soc., Chem. Commun., 1976, 482; Inorg. Chem., 1978, 17, 1238; D. F. Gaines, J. L. Walsh and J. C. Calabrese, Inorg. Chem., 1978, 17, 1242; D. F. Gaines, J. L. Walsh, J. H. Morris and D. F. Hillenbrand, Inorg. Chem., 1978, 17. 1516.
- 3 P. Paetzold, J. Müller, F. Meyer, H. Hansen and L. Schneider, Abstracts Eighth International Meeting on Boron Chemistry (IMEBORON VIII), Knoxville, Tennessee, USA, July 11-15 1993, abstract no. PL2, p. 15; Current Topics in Boron Chemistry, ed. G. Kabalka, RSC, Cambridge and London, 1994, in the press.
- 4 J. Holub, T. Jelínek, B. Štíbr, J. D. Kennedy and M. Thornton-Pett, Abstracts Eighth International Meeting on Boron Chemistry (IMEBORON VIII), Knoxville, Tennessee, USA, July 11–15 1993, abstract no. CA14, p. 47; Current Topics in Boron Chemistry, ed. G. Kabalka, RSC, Cambridge and London, 1994, in the press.
- K. Baše, J. Plešek, S. Heřmánek, J. Huffman, P. Ragatz and R. 5 Schaeffer, J. Chem. Soc., Chem. Commun., 1975, 934
- K. Baše, F. Hanousek, B. Štíbr, J. Plešek and J. Lyčka, J. Chem. Soc., Chem. Commun., 1981, 1193.
- 7 A. Arafat, J. Baer, J. C. Huffman and L. J. Todd, Inorg. Chem., 1986, 25, 3757.
- 8 B. Štíbr, J. D. Kennedy and T. Jelínek, J. Chem. Soc., Chem. Commun., 1990, 1309.
- 9 J. Müller, P. Paetzold and R. Boese, Heteroatom Chem., 1990, 1, 461.
- 10 J. Müller, J. Runsink and P. Paetzold, Angew. Chem., Int. Edn. Eng., 1991, 30, 175.
- 11 X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy and P. MacKinnon, J. Chem. Soc., Dalton Trans., 1988, 1785.
- 12 R. L. Sneath and L. J. Todd, *Inorg. Chem.*, 1973, **12**, 44. 13 T. Jelínek, J. D. Kennedy and B. Štíbr, *J. Chem. Soc.*, *Chem.* Commun., 1993, 1628.
- 14 J. H. Jones, B. Štíbr, J. D. Kennedy and M. Thornton-Pett, Inorg. Chim. Acta, 1994, submitted (ten-vertex {PtNB₈} and {RuNB₈} cluster systems).