Use of the 2,5-bis-(*tert*-butyl)phospholide Anion as an η^5 -Ligand: Stabilisation of η^5 -phospholyl Complexes of Ruthenium and Rhodium

Duncan Carmichael, Louis Ricard and François Mathey*

Laboratoire 'Hétéroéléments et Coordination', CNRS URA 1499, DCPH Ecole Polytechnique, 91128 Palaiseau Cedex, France

The 2,5-bis-(*tert*-butyl)phospholide anion promotes η^5 -complexation to late transition metals in cases where unhindered phospholyls may favour η^1 -ligation through the phosphorus lone pair.

A phospholyl ligand may bind to metals either through its lone pair of electrons, in η^1 -coordination mode, or through its delocalised 6π aromatic system. In the second case, it gives a series of η^5 -complexes which are analogous to the well-known metal cyclopentadienyls, and which are potentially interesting in synthesis and catalysis. Therefore, it is important to develop syntheses which lead selectively and predictably to this η^5 -mode.

Calculations of phospholide anions have shown that the homo and the negative charge are localised mainly upon the heteroatom,¹ so the initial interaction of a metal salt with a phospholide anion occurs at phosphorus. The M-P bond which is formed during this process is strong for the later transition metals, and this favours η^1 over η^5 coordination. Furthermore, where π complexes of the 'softer' metals are known, they show a strong tendency towards oligomerisation through their phosphorus lone pairs.²

In this paper, we outline an approach to new types of mononuclear η^5 -phospholyl complexes. To prevent σ -coordination, we used the previously unknown 2,5-bis-(*tert*-butyl)-phospholide anion, whose phosphorus lone pair is sterically blocked. Kuhn,³ Nixon⁴ and their coworkers have shown that *tert*-butyl groups tend to favour η^5 -complexation of heterocyclopentadienides: here we demonstrate that they permit the synthesis of η^5 -monophospholyl complexes of ruthenium and rhodium.

The colourless, crystalline phosphole 1 was prepared through the butyllithium-catalysed⁵ addition of phenylphosphane to 1,4-di(*tert*-butyl)buta-1,3-diyne, and isolated by chromatography on silica with a hexane eluent. Routine coupling and chromatography gave the air-stable pale yellow 1,1'biphosphole 2, which serves as a clean source of the 2,5-bis(*tert*-butyl)phospholide anion 3. Chlorotrimethylsilane reacts with 3 to give the P-silyl compound 4, which shows unusual stability with respect to thermal dimerisation $(t_{1/2} ca 3 h at 80 \,^{\circ}\text{C})$ and demonstrates the influence of the α -tert-butyl

substituents. These block the 1,5-silyl shifts through which such compounds generally decompose.⁶

The coordinating behaviour of 3 was investigated through reactions with ruthenium and rhodium complexes. A straight-

Scheme 1 Reagents and conditions: i, $Bu^{t}C_{4}Bu^{t}$, 1 h, 50 °C, THF, 40%; ii, Li, 15 min, 20 °C, THF, then AlCl₃ (0.25 equiv.) then I₂ (0.5 equiv.), 15 min, 20 °C, THF, 65%. iii, Li, 15 min, 20 °C, THF, then TMSCl (chlorotrimethylsilane) (1 equiv.), 1 min, 0 °C, THF, 90%; iv, Li, 2 h, 20 °C, THF, 95%; v, S₈, N-methylimidazole (cat.) 45 min, 0 °C, THF, 80%; vi, TMSCl, 5 min, 20 °C, THF, 80%; vii, [Rh(CO)₂Cl]₂, 45 min, 0 °C, THF, 20%; viii, mixture of [Ru(η^{5} -C₅Me₅)Cl₂]₂, and Li, 5 h, 20 °C, THF, 95%

forward interaction with $[Rh(CO)_2Cl]_2$ gave the red crystalline complex $[Rh(But_2C_4H_2P)(CO)_2]$ **5**, albeit in poor yield. The air-stable $[Ru(\eta^5-C_5Me_5) (But_2C_4H_2P)]$ **6** was prepared by two methods. The first, a redox reaction between **3** and $[Ru(\eta^5-C_5Me_5) Cl_2]_2$, produced **2** as a side-product: a more efficient route involved stirring lithium metal with a THF solution of $[Ru(\eta^5-C_5Me_5) Cl_2]_2$ and the biphosphole **2**.[†]

[Ru(η^5 -C₅Me₅)(Bu^t₂C₄H₂P)] 6, is one of the simpler members of a series of ruthenium complexes which includes [Ru(C₈H₁₁)(Bu^t₃C₃P₂)] 8,⁷ [Ru(Bu^t₂C₂P₃)(Bu^t₃C₃P₂)] 9⁸ and [Ru(η^5 -C₅Me₅) (P₅)] 10.⁹ It should be underlined that a wide range of 'soft' transition metals has been shown to coordinate to these latter anions⁴ but relatively few complexes having monophospholyl rings have appeared. Furthermore, our attempts to prepare the unknown [Ru(η^5 -C₅Me₅)-(Me₂H₂C₄P)] 11, by routes which are analogous to the synthesis of 6, have failed. Thus, we feel that the 2,5-bis-(*tert*butyl)phospholyl ligand has rather unusual properties, which should allow an expansion of the chemistry of π -coordinated monophospholyls.

Received, 26th January 1994; Com. 4/00503A

Footnotes

† Selected spectroscopic data: ³¹P ¹³C and ¹H NMR in CDCl₃ unless otherwise stated: δ in ppm, +ve to high frequency of external H₃PO₄

or Me₄Si, J in Hz: 1: δ^{31} P: 0.7; δ^{13} C: 162.2 [J_{PC} 7.6 (ring C)], 132.9 [(br) (ring CH)]; δ^{1} H: 6.5 [J_{PH} 12.3 (ring CH)]. 2: δ^{31} P: -28.0. 3: δ^{31} P: 60.4. δ^{13} C: 160.1. [J_{PC} 46.9 (ring C)], 113.0 [J_{PC} 0 (ring CH)] (THF); 4: δ^{31} P: -41.3 (THF). 5: δ^{31} P: 1.0,(J_{RhP} 6.4); δ^{13} C: 192.0 [J_{RhC} 87.6, J_{PC} 4.3 (CO)], 143.0 [J_{RhC} 5.6, J_{PC} 6.6.5 (ring C)], 94.4 [J_{RhC} 3.9, J_{PC} 3.9 (ring CH)]; δ^{14} H: 5.92 [J_{PH} 3.8, J_{RhH} 0.6, (ring CH)]. 6: δ^{31} P: -63.0; δ^{13} C: 116.7 [J_{PC} 6.7 (ring C)], 78.8 [J_{PC} 4.7 (ring CH)]; δ^{1} H: 4.57 [J_{PH} 5.1 (ring CH)]. 7: δ^{31} P: 48.4.

‡ Crystal data: colourless crystals of 6, C22H35PRu were grown from a methanol solution of the compound. Data were collected at $-150 \pm$ 0.5 °C on an Enraf Nonius CAD4 diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The crystal structure was solved and refined using the Enraf Nonius MOLEN package. The compound crystallises in space group $P2_1$ (No. 4), a =10.521(1), b = 9.337(1), c = 12.034(1) Å, $\beta = 113.52(1)$ °; U = 1083.92(4) Å³; Z = 2; $D_c = 1.322$ g cm⁻³; $\mu = 7.8$ cm⁻¹; F(000) = 452. A total of 3503 unique reflections were recorded in the range $2^{\circ} \leq 2\theta$ $\leq 60.0^{\circ}$ of which 1003 were considered as unobserved [$F^2 < 3.0\theta\sigma$ (F^2)], leaving 2500 for solution and refinement. The position of the ruthenium atom was obtained from a Patterson map. The hydrogen atoms were included as fixed contributions in the final stages of leastsquares refinement while using anisotropic temperature factors for all other atoms. A non-Poisson weighting scheme was applied with a p factor equal to 0.05. The final agreement factors were R = 0.025, R_w 0.034, GOF = 1.00.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 M. D. Su and S. Y. Chu, J. Phys. Chem., 1989, 93, 6043 and references therein.
- 2 S. Holand, F. Mathey, J. Fischer and A. Mitschler, Organometallics, 1983, 2, 1234.
- 3 N. Kuhn, S. Stubenrauch, R. Boese and D. Bläser, J. Organomet. Chem., 1992, 440, 289 and references therein.
- 4 J. F. Nixon, Chem. Rev., 1988, 88, 1327 and references therein.
- 5 W. Egan, R. Tang, G. Zon and K. Mislow, J. Am. Chem. Soc., 1971, 93, 6205.
- 6 S. Holand, F. Mathey and J. Fischer, Polyhedron, 1986, 5, 1413.
- 7 P. B. Hitchcock, R. M. Matos and J. F. Nixon, J. Organomet. Chem., 1993, 462, 319.
- 8 R. M. Matos, P. B. Hitchcock and J. F. Nixon, *Phosphorus, Sulfur and Silicon*, 1993, 77, 817.
- 9 O. J. Scherer, T. Brück and G. Wolmershäuser, Chem. Ber., 1988, 121, 935.