YSr₅Ni₃O₈—a New Nickel(I) Oxide with a Defect Sr₂CuO₃ Structure

M. James* and J. P. Attfield

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge, UK CB3 0HE

A stoichiometric oxide of $3d^9$ nickel(i), $YSr_5Ni_3O_8$, has been prepared through the hydrogen reduction of $YSr_5Ni_3O_{11}$, resulting in a change from a tetragonal K_2NiF_4 type structure to an orthorhombic Sr_2CuO_3 arrangement in which 1/3 of the bridging oxygen atoms are missing from chains of apex-linked nickel oxide square planes.

Oxides containing d⁹ transition-metal ions have been of great interest since the discovery of high T_c superconductivity through the doping of layered copper(11) oxides. Although many oxides of Cu²⁺ are known, few other d⁹ ions form stable oxides, for instance, AgO contains Ag⁺ and Ag³⁺ rather than $4d^9 Ag^{2+.1}$ The $3d^9$ ion Ni⁺ is readily stabilised by π -acceptor ligands, e.g. in Ni(PPh₃)₃X (X = Cl, Br, I), but is rarely found in an oxide environment. The only known examples are the infinite-layer phase LaNiO₂² with a square-planar coordination of oxygen to nickel, and MNa_2NiO_2 (M = Rb, K)³ with a linear two-coordination. However, mixed Ni+/Ni2+ oxides such as La_{1.6}Sr_{0.4}NiO_{3.47}⁴ and LaSrNiO_{3.1}⁵ have been prepared by the reduction of K_2NiF_4 type oxides $La_{2-x}Sr_xNiO_4$. We have recently discovered that a stoichiometric nickel(III) phase with a defect K₂NiF₄ structure, MSr₅Ni₃O₁₁, can be prepared for $M = Y_{,6}$ Dy, Er and Tm. In this communication we show that these phases can be reduced to new nickel(1) oxides, MSr₅Ni₃O₈, and we describe the crystal structure of YSr₅Ni₂O₀.

The thermogravimetric reduction of the nickel(111) oxide $YSr_5Ni_3O_{11}$ is shown in Fig. 1. The 30 mg sample was heated at 5 °C min⁻¹ under a 5% H₂-N₂ atmosphere (58 ml min⁻¹) in a Stanton Redcroft STA-760 thermogravimetric analyser. The plateau corresponding to an average nickel oxidation state of +1 suggested the presence of a stable reduced intermediate between $YSr_5Ni_3O_{11}$ and the final decomposition products Y_2SrO_4 , SrO and Ni. This reduced intermediate has been prepared by heating $YSr_5Ni_3O_{11}$ under the same atmosphere at 450 °C for 4 h. A similar intermediate is observed in the thermogravimetric reduction of $MSr_5Ni_3O_{11}$ (M = Dy, Er, Tm).

The powder X-ray diffraction profile of the reduced material was recorded on a Phillips PW1710 diffractometer, utilising Cu-K α radiation. Data of sufficient quality for structure refinement were collected over $13 \le 2\theta \le 113^\circ$, in 0.025° steps, with integration times of 11 s. A Rietveld refinement⁷ of the structure was carried out with the GSAS program.⁸ Small amounts of SrO, Y₂SrO₄ and Ni metal were also observed in the profile and were fitted in the refinement. The pattern of the new phase is similar to that of the original tetragonal nickel(111) phase, but with a pronounced ortho-

Fig. 1 Thermogravimetric reduction of $YSr_5Ni_3O_{11}$ shown as percentage mass loss and the equivalent change in average nickel oxidation state

rhombic splitting. This suggested a Sr_2CuO_3 type structure⁹ for the new phase, and the data were fitted using this model with (1/6Y + 5/6Sr) at the Sr site in space group *Immm*. A good fit was obtained from this structural model and a pseudo-Voigt peak shape function. In the final stages the O site occupancies were refined independently. The O(1) site was found to be fully occupied but vacancies were found at the O(2) site. Results of the refinement and bond distances are listed in Table 1.

These results indicate that YSr₅Ni₃O₁₁ can be reduced to YSr₅Ni₃O₈ without decomposition. This structure is therefore notable for stabilising a complete range of nickel oxidation states between +1 and +3. No Y/Sr ordering is apparent within these compounds. The fully oxidised phase has a tetragonal K_2NiF_4 type structure with $\frac{1}{6}$ oxygen vacancies within the xy plane. Reduction to YSr₅Ni₃O₈ removes a further 3 of these oxygens, resulting in a structural change to the Sr_2CuO_3 type (Fig. 2) in which the sites at (0, 1/2, 0) are vacant and Cu is in square-planar coordination. The refined O(2) site oxygen occupancy shows that the remaining $\frac{1}{3}$ vacancies in YSr₅Ni₃O₈ are at this site which reduces the average nickel coordination number to 31. The high concentration of oxygen vacancies at the O(2) site could result in superstructures of isolated linear NiO2 units and linked NiO4 square planes, as is found in the analogous chains in $YBa_2Cu_3O_{6+x}$ for intermediate values of x, e.g. x = 0.4.¹⁰ No superstructure within YSr₅Ni₃O₈ is evident in our powder Xray studies and electron microscopy will be used to investigate this possibility further.

Table 1 Profile and structural parameters and interatomic distances from the refinement of $YSr_5Ni_3O_8$ in space group *Immm*, with esds in parentheses

Cell dimensions/Å		
a = 3.8030(2)	b = 3.5233(2)	c = 12.5424(6)
Profile data		
No. of reflections $= 44$,	No. of points = 4000 ,	No. of parameters $= 21$
$R_{\rm WP}=0.040,$	$R_{\rm P} = 0.029$,	$R_{\rm F} = 0.059$,

Atomic parameters

Atom	Symmetry position	x	у	z	Site occupancy
Ni	2a	0	0	0	1.0
Sr	4 <i>i</i>	0	0	0.3553(1)	0.833
Y	4 <i>i</i>	0	0	0.3553	0.167
O(1)	4 <i>i</i>	0	0	0.1565(6)	1.0
O(2)	2 <i>b</i>	0.5	0	0	0.72(1)
	Interato	mic dis	tances/	Å	
	meruto	mie dis	unees, i	7	
	Ni-O(1)		×2	1.963(8)	
	Ni–O(1) Ni–O(2)		×2 ×1 ¹ / ₃	1.963(8) 1.901(1)	
	Ni–O(1) Ni–O(2) Mean Ni	i-O	$ \begin{array}{c} \times 2 \\ \times 1\frac{1}{3} \\ \times 3\frac{1}{3} \end{array} $	1.963(8) 1.901(1) 1.938(6)	
	Ni–O(1) Ni–O(2) Mean Ni Y/Sr–O(i-O	$ \begin{array}{r} \times 2 \\ \times 1\frac{1}{3} \\ \times 3\frac{1}{3} \\ \hline \\ \times 4 \end{array} $	1.963(8) 1.901(1) 1.938(6) 2.596(1)	
	Ni-O(1) Ni-O(2) Mean Ni Y/Sr-O(Y/Sr-O(i-O [1) [1']	×2 ×1 ¹ / ₃ ×3 ¹ / ₃ ×4 ×1	1.963(8) 1.901(1) 1.938(6) 2.596(1) 2.493(7)	
	Ni-O(1) Ni-O(2) Mean Ni Y/Sr-O(Y/Sr-O(Y/Sr-O(-O 1) 1') 2)		1.963(8) 1.901(1) 1.938(6) 2.596(1) 2.492(7) 2.529(1)	

Fig. 2 The structure of YSr₅Ni₃O₈ showing chains of apically linked NiO₄ square planes along the *a* direction

To verify that the disordered Ni-O coordination environment is consistent with Ni+, a bond-valence calculation was carried out using the method of Brown and Altermatt,11 in which the valence contribution of each Ni–O bond of length r_i is $e^{(r_0-r_1)/0.37}$. A value of $r_0 = 1.50$ Å was derived from the bond lengths in the nickel(1) oxides $LaNiO_2^2$ and MNa_2NiO_2

J. CHEM. SOC., CHEM. COMMUN., 1994

(M = Rb, K),³ and this gave a total calculated valence of 1.03 for the Ni environment in YSr₅Ni₃O₈.

The magnetic susceptibility of the reduced sample was measured on a Quantum Design SQUID magnetometer in applied fields between 0.05 and 5.0 T. YSr₅Ni₃O₈ was found to be paramagnetic between 6 and 300 K, but the effective magnetic moment could not be derived due to the presence of ferromagnetic Ni metal in the sample.

Both YSr₅Ni₃O₈ and LaNiO₂ result from low-temperature hydrogen reductions of their nickel(III) analogues, although the former compound requires less stringent conditions than the latter. These two nickel(1) oxides are isostructural and isoelectronic with simple copper(11) oxides such as Sr₂CuO₃ and infinite-layer type $SrCuO_2$, respectively, suggesting that reduced nickel oxide analogues of the high- T_c copper oxides could be prepared if appropriate oxidised precursors or other synthetic routes can be found. These materials will tend to be more insulating than the corresponding copper oxides, as the Ni3d-O2p energy difference is greater than the Cu3d-O2p separation, but experimental observations of their electronic properties will nevertheless be of interest.

Received, 3rd February 1994; Com. 4/00665H

References

- 1 K. Yvon, A. Bezinge, P. Tissot and P. Fischer, J. Solid State Chem., 1986, 65, 225.
- 2 M. Crespin, P. Levitz and L. Gatineau, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 1181
- W. Burow, J. Birx, F. Bernhardt and R. Hoppe, Z. Anorg. Allg. Chem., 1993, 619, 923.
- 4 M. Crespin, J. M. Bassat, P. Odier, P. Mouron and J. Choisnet, J. Solid State Chem., 1990, 84, 165
- 5 M. Crespin, C. Landron, P. Odier, J. M. Bassat, P. Mouron and J. Choisnet, J. Solid State Chem., 1992, 100, 281.
- 6 M. James and J. P. Attfield, J. Solid State Chem., 1993, 105, 287.
- 7 H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.
 8 A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LA-UR-86-748, 1987.
- 9 M. T. Weller and D. R. Lines, J. Solid State Chem., 1989, 82, 21.
- 10 R. Sonntag, Th. Zeiske and D. Hohlwein, Physica B, 1992, 180/181, 374.
- 11 I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41.244.