Metal-catalysed Alkylation of Pentene to Hexane

R. H. Cunningham,**R. A. van Santen,*J. van Grondelle,*A. V. G. Mangnus^b and L. J. van IJzendoorn^b * Schuit Institute of Catalysis, Department of Chemical Engineering and

^b Department of Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

The use of ¹¹C-labelled CO in the formation of ¹¹C-labelled *n*-hexane from pent-1-ene over 5% Ru/SiO₂ gives clear evidence for the presence of different reaction pathways for production of *iso*- and *n*-hexane; recombination of pentene fragments appears to be the dominant route in hexane formation.

Earlier work¹ has shown that carbon atoms from CH_4 can be inserted into ethene or propene in a surface reaction at a transition metal surface. Essential to the process was the separation of the CH_4 activation step from the associative carbon insertion step.¹ Here we report analysis of such a sequential reaction for the incorporation of C_1 species into a longer hydrocarbon chain. The focus of the investigation was the *n*/*iso*-ratio of the products.

Instead of C_1 species formed from CH_4 , we produced surface C_1 species from CO. Earlier we reported the comparable reactivities of C_1 species produced from CO² and methane.³ It is important to form surface carbon species from CO, as it has been shown that chain growth in Fischer-Tropsch synthesis involves partially hydrogenated surface CH_x fragments rather than undissociated CO.^{4,5}

In order to distinguish C₆ formation by reaction of C₅ with surface C₁ from the recombination of C₅ fragments, one had to label the C₁ species formed from the CO. In an earlier investigation we used ¹³C-labelled methane.¹ For the longer chain molecules the use of radiochemically labelled C₁ species is more convenient. Here we report on the use of radiochemically labelled ¹¹C, which is a positron emitting isotope. ¹¹C was produced by bombarding a gas target vessel containing high purity N₂ with 15 MeV protons accelerated in the Eindhoven University cyclotron. The ¹¹C was produced initially in the form of labelled CO₂ which was converted to CO in a Zn furnace operated at 390 °C. During the experiment described below the total activity of ¹¹C produced was 300 Mbq which was equivalent to 9×10^{-13} mol.

380 mg of a 5% Ru/SiO₂ catalyst was used in the production of ¹¹C-labelled *n*-hexane via the high temperature adsorption of ¹¹CO at 300 °C, and an adsorption of pent-1-ene and subsequent hydrogenation at a lower temperature of 110 °C. The overall process was similar to that used previously in the conversion of methane into higher hydrocarbons by Koerts et al.² and Belgued et al.⁶ The catalyst was prepared by incipient wetness impregnation of Grace silica 332 (surface area 240 m² g⁻¹) with RuCl₃ solution, and reduced in flowing H₂ at 450 °C prior to use. The total number of surface metal atoms was 5.6×10^{-5} mol; this was based on a 30% metal dispersion, calculated from CO adsorption measurements made at room temperature. Experimentally it was found that a quantity of non-labelled CO (2 \times 10⁻⁶ mol) had to be adsorbed on the catalyst at the CO adsorption temperature prior to ¹¹CO adsorption. This may have helped to clean the surface by removal of any contaminating O atoms which may react with the ¹¹C species to produce ¹¹CO₂. Evidence for removal of surface O from small Rh particles by CO has been observed recently by Matolín et al.⁷ In total 8% of the ¹¹C produced (7.0 \times 10⁻¹⁴ mol) was passed over the catalyst at 300 °C in the form of ¹¹CO.

At 110 °C, 4.1×10^{-5} mol of pent-1-ene was passed over the catalyst. This was done *via* a pentene saturator at 22 °C, and a 150 µl injection loop. The pulsing of pent-1-ene was followed by pulsing 5.4×10^{-4} mol of hydrogen over the catalyst at the same temperature. The resulting products were separated by on-line gas chromatography, and the ¹¹C-labelled hydrocarbons were detected by a NaI crystal scintillation detector. An injection loop volume of 1.2 ml was used in the GC, and in this way 11% of the hydrocarbons produced as a result of the hydrogenation step could be analysed. The total quantity of

labelled hydrocarbons which were separated using the above technique was 6.4×10^{-17} mol; however this was sufficient to allow adequate resolution of each of the products. The largest errors involved in the process were in the measurement of the product-peak areas. These errors were calculated by taking into account the area of the peak and the background activity.

It was found that ¹¹C-labelled hydrocarbons were evolved from the catalyst surface in the pentene adsorption step as well as during the consecutive hydrogenation step. 4.2% of the ¹¹C adsorbed on the catalyst surface (7.5 \times 10⁻¹⁷ mol) was removed from the catalyst surface during pulsing of pent-1ene. This was presumably as a result of hydrogenation via hydrogen lost from the pent-1-ene during adsorption. The majority of the species active at 110 °C were removed from the catalyst after hydrogenation. A large proportion (1.1×10^{-15} mol) of the ¹¹C adsorbed on the surface was found to be less reactive and could only be removed from the catalyst with hydrogen around 200 °C. This constituted 63.1% of the total ¹¹C species which were removed from the catalyst surface. These species have previously been described as β -carbon which has been shown to be formed from the more reactive α carbon after prolonged periods at high temperature.8 The total quantity of ¹¹C removed from the surface during pent-1ene adsorption, hydrogenation at 110 °C and hydrogenation at 200 °C was 1.8×10^{-15} mol. This is somewhat less than the quantity of ¹¹C which was passed over the catalyst (7.0×10^{-14}) mol). However it was observed that ¹¹C was lost from the catalyst in the form of ¹¹CO₂ during the CO adsorption period, and during the cooling period.

The ¹¹C product selectivities from the hydrogenation reaction are shown in Fig. 1. Selectivities shown for labelled butane, pentane and hexane are the sum of both the *n*- and *iso*components of each hydrocarbon. Of the labelled hydrocarbons higher than propane, *n*-hexane was found to be the most abundant component; in total 4.7×10^{-18} mol was isolated. This constituted 7.4% of the total labelled-hydrocarbon yield isolated during the GC injection, somewhat less than the figure of 10% observed by Koerts *et al.* for the production of propane *via* the incorporation of C₁ from methane into ethylene.¹ The percentage conversions of pent-

60 50 -50 -(%) 40 -20 -10 -0 Methane Ethane Propane Butane Pentane Hexane Hydrocarbon

Fig. 1 Selectivity for gas-phase labelled hydrocarbons

1-ene to labelled *n*-hexane and surface ¹¹C to *n*-hexane were 1.0×10^{-10} and 0.26% respectively; these were calculated based on the quantity of *n*-hexane isolated in the GC injection. At 110 °C it was found that on the addition of hydrogen a substantial proportion of the adsorbed pent-1-ene was hydrogenolysed to shorter hydrocarbons. The reactivity of these pentene fragments with ¹¹C₁ species is apparent from the production of ¹¹C-labelled compounds with chain lengths shorter than six carbon atoms. This is understandable as it has been shown previously that over Ru/SiO₂ a C_n olefin could undergo cleavage of mainly a terminal C–C bond to give C_{n-1} and C₁ fragments. The C₁ could either lead to the formation of methane, or recombine with the C_n olefin to give C_{n+1} olefins.⁹

Fig. 2 illustrates the difference in the ratios of *n*- to *iso*-hydrocarbons for both the non-labelled and labelled hydrocarbon production. The ratios of *n*-butane to *iso*-butane are not shown in the figure; however small quantities of nonlabelled *iso*-butane were formed, but there was no evidence for the formation of any labelled *iso*-butane. It is clear that in the case of both pentane and hexane there is a difference between the *n/iso*-ratio for the labelled and non-labelled fraction; these differences were greater than those which could be attributed to experimental error. The *n/iso*-ratios shown in Fig. 2 were the following: pentane (non-labelled) 17.74 ± 0.89 ; pentane (labelled) 8.5 ± 1.4 ; hexane (nonlabelled) 2.04 ± 0.04 ; hexane (labelled) 3.9 ± 0.4 . The difference in the *n/iso*-ratio follows from the different reaction

Fig. 2 n/iso-ratio for labelled and non-labelled products hydrogenated at 110 $^{\circ}\mathrm{C}$

pathways leading to each product. Non-labelled hexane can be formed from the recombination of pentene fragments or from the addition of a C_1 to a surface C_5 species. The formation of labelled hexane can only come from addition of an ¹¹C₁ species to a C₅; recombination of cracked fragments to form labelled hexane is less likely as this would involve two consecutive C-C coupling reactions. The higher n/iso-ratio for labelled hexane indicates that C₁ preferentially adds to a terminal carbon atom of the alkane chain. This is in agreement with work carried out by O'Donohoe et al., 10 and with radiotracer studies carried out by Paál et al., 11 which concluded that homologation occurs by the addition of C_1 units to the end carbon of dehydrogenated surface species. For non-labelled hexane production, the yield of the iso-fraction is therefore dominated by the recombination of cracked-pentene fragments. The far higher n/iso-non-labelled pentane ratio comes as a result of simple hydrogenation of the adsorbed pent-1ene, which is found to be the most abundant surface species. Labelled pentane will mainly be formed from combination of a ¹¹C₁ surface species with a C₄ fragment; however the high n/iso-ratio for labelled pentane also indicates that the C₁ is added preferentially to the terminal carbon of the alkane chain.

We acknowledge support by NWO (Dutch organisation for Scientific Research) as part of a Stimulans project.

Received, 7th October 1993; Com. 3/06009H

References

- 1 T. Koerts, P. A. Leclercq and R. A. van Santen, J. Am. Chem. Soc., 1992, 114, 7272.
- 2 T. Koerts, W. J. J. Welters and R. A. van Santen, J. Catal., 1992, 134, 1.
- 3 T. Koerts and R. A. van Santen, J. Chem. Soc., Chem. Commun., 1991, 1281.
- 4 A. T. Bell, Catal. Rev. Sci. Eng., 1981, 23, 203.
- 5 M. Lecante, A. Theolier, R. Rojas and J. M. Basset, J. Am. Chem. Soc., 1984, 106, 114.
- 6 M. Belgued, H. Amariglio, P. Pareja, A. Amariglio and J. Saint-Just, *Catal. Today*, 1992, **13**, 437.
- 7 V. Matolín, M. H. Elyakhloufi, K. Masek and E. Gillet, Catal. Lett., 1993, 21, 175.
- 8 P. Winslow and A. T. Bell, J. Catal., 1984, 86, 158.
- 9 E. Rodriguez, M. Leconte and J. M. Basset, J. Catal., 1991, 132, 472.
- 10 C. O'Donohoe, J. K. A. Clarke and J. J. Rooney, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 345.
- 11 Z. Paál, M. Dobrovolszky and P. Tétényi, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 3037.