Synthesis and S-Centred Reactivity of (C₅Me₅)₃Ru₃S₄+

Eric J. Houser, Harald Krautscheid, Thomas B. Rauchfuss* and Scott R. Wilson

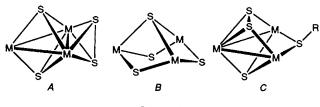
School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801 USA

Addition of $(C_5Me_5)Ru^+$ to $(C_5Me_5)_2Ru_2S_4$ affords $(C_5Me_5)_3Ru_3S_4^+$; this cluster displays *S*-centred reactivity towards a range of electrophiles (H⁺, SO₂, Me⁺, Et⁺) to give adducts with solid-state structures containing $Ru_3(\mu_3-S_2)(\mu_3-S)(\mu-SR)$ cores.

The only known ruthenium sulfide, RuS_2 , is comprised of octahedrally coordinated Ru centres interconnected by persulfide ligands.¹ There has been much interest in RuS_2 as a catalyst for hydrodesulfurization and photochemical water splitting.^{2,3} In both processes it is plausible that the sulfur ligands in RuS_2 are involved in substrate binding. We were intrigued by the possibility that soluble ruthenium persulfide clusters might also prove highly reactive towards small molecules.

In evaluating possible routes to Ru_x persulfido clusters we were attracted by the metalloligand approach whereby small metal sulfido compounds are deployed as ligands towards other metals. Noteworthy applications of this strategy have included the metallation of MOS_4^{2-} , $Fe_2S_2(CO)_6$ and $(C_5R_5)_2V_2S_4$.⁴ We report here the application of this cluster construction methodology for the preparation of an unusual family of reactive Ru_3S_4 clusters. Our results define a potentially general route to reactive metal sulfido clusters *via* the addition of $(C_5Me_5)Ru^+$ to $L_2M_2S_4$ species, for which there are numerous examples.^{4a}

The reaction of $[(C_5Me_5)Ru(MeCN)_3]PF_6^5$ with $(C_5Me_5)_2Ru_2S_4^6$ in refluxing MeCN affords high yields of the red species $[(C_5Me_5)_3Ru_3S_4]PF_6$ ([1]PF₆), eqn. (1); the


$$(C_5Me_5)Ru_{-S^{--}}^{S^{--}S}Ru(C_5Me_5) + (C_5Me_5)Ru(MeCN)_3^+$$

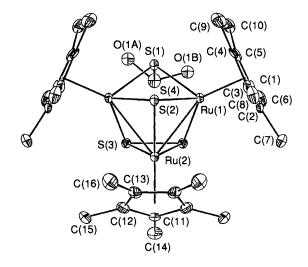
($(C_5Me_5)_3Ru_3S_4^+$ (1)
[1]*

empirical formula was confirmed by microanalysis and mass spectrometry.[†]

The observation of a single line in the ¹H NMR spectrum (25 to -40 °C, 500 MHz, CD₃CN) is consistent with a $C_{3\nu}$ M₃(μ_2 -S)₃(μ_3 -S) core typical of clusters with this stoichiometry (Scheme 1).⁷ Interestingly, however, the reactivity of this species indicates otherwise. We have not been able to obtain single crystals of well-ordered salts of 1⁺ but the cell data are at least consistent with the proposed molecularity.[‡]

The structure of 1⁺ can be partly inferred from the structures of its derivatives. The adduct 1 SO_2^+ was prepared by both addition of SO₂ to a MeCN solution of [1]PF₆ as well as air oxidation of the latter. This cluster features an isosceles Ru₃ core featuring two Ru–Ru bonds.§ These metals are joined by triply bridging sulfido and persulfido ligands (Fig. 1). The SO₂ is bound to an otherwise doubly bridging sulfide. The geometry at S(1) is consistent with SO₂ serving as a Lewis acid, the long S–SO₂ distance of 2.469 Å being comparable to SO₂ adducts of other metal sulfides.⁸

The lability of salts of $1 \cdot SO_2^+$ precluded detailed spectroscopic characterisation in solution, hence we examined the


Scheme 1

more robust S-alkylated derivatives. Solutions of 1PF₆ quickly give a green colour upon addition of ROTf (R = Me, Et) to give the salts $[1 \cdot R](PF_6)(OTf)$, isolated as analytically pure black microcrystals.¶ Significantly the S-alkylated clusters are unreactive towards further equivalents of ROTf. ¹H NMR spectra of these derivatives indicate C_s structures with two types of C_5Me_5 groups (2:1) and one S-alkyl group. A crystallographic determination confirmed that 1. Et2+ is very similar to $1 \cdot SO_2^+$ in terms of the symmetry and connectivity of the $Ru_3S_4^{4+}$ core. The electrophiles in both $1 \cdot Et^{2+}$ and $1 \cdot SO_2^+$ are oriented towards the persulfide face of the Ru₃ triangle. In each case, the S-S bond in the persulfido group is ca. 0.15 Å longer than typical S-S bonds. E.g. (C₅Me₅)₂-Ru₂S₄ has S-S distances of 2.02 and 2.04 Å.⁹ The S-S distances in the adducts of 1⁺ are more similar to that seen in the mineral RuS₂ (2.179 Å) which adopts the pyrite structure.¹

Protonation experiments confirm the nucleophilic character of 1⁺. Addition of HOTf to solutions of 1⁺ gives a green species which shows a 2:1 C₅Me₅ pattern in its ¹H NMR spectrum (the SH signal was not observed), as seen for $1 \cdot R^{2+}$. Protonation can also be effected with *p*-MeC₆H₄SO₃H (pK_a -1.74), but not CH₃CO₂H (pK_a 4.7). Aqueous ammonia cleanly converts $1 \cdot H^{2+}$ back to 1^+ [eqn. (2)].

$$(C_5Me_5)_3Ru_3S_4^+ \xrightarrow[NH_3]{H^+} (C_5Me_5)_3Ru_3S_3(SH)^{2+}$$
 (2)

Two types of $(C_5R_5)_3M_3S_4$ clusters are known (Scheme 1). The clusters, including $(C_5R_5)_3V_2CoS_4$ and $(C_5R_5)_3Mo_2$ -FeS₄+, adopt core structures with an edge-bridging persulfido ligand (type A in Scheme 1).¹⁰ $(C_5R_5)_3Mo_3S_4$ on the other hand features a symmetrical $C_{3\nu}$ core and no persulfides (type

1284

B in Scheme 1).¹¹ The structures of $1 \cdot \text{Et}^{2+}$ and $1 \cdot \text{SO}_2^+$, type *C* in the Scheme, resemble neither type *A* nor type *B*. This suggests that 1^+ itself may adopt a new M₃S₄ structure. The significance of structure/reactivity correlations in these clusters is illustrated by our finding that $(C_5\text{Me}_5)_3\text{Mo}_3\text{S}_4^+$,** a stoichiometric analogue of 1^+ , is completely unreactive towards both MeOTf and concentrated HCl.

A new class of M_3S_4 clusters has been discovered which displays novel, S-centred reactivity. These findings suggest that discussions of the reactivity of RuS_2 should consider a substrate-binding role for the sulfido ligands.¹² Our studies also show that the (C_5Me_5)Ru⁺ is a promising building block for cluster synthesis.

This research was supported by the US National Science Foundation. We thank Professor D. Fenske for assistance in the crystallography. Ruthenium was provided by Johnson Matthey.

Received, 22nd December 1993; Com. 3/07519B

Footnotes

^{† 1}H NMR [(CD₃)₂CO]: δ 1.93 (s). ¹³C{¹H} NMR [(CD₃)₂CO]: δ 11.24, 100. UV–VIS (nm, CH₃CN): 326(sh), 432, 496. FABMS (*m*/*z*): 839 (M⁺), 807 (M⁺ – S). Similar procedures gave the Cl⁻, OTf⁻, SbF₆⁻ and BF₄⁻ salts.

 $\ddagger C_{30}H_{45}F_6PRu_3S_4$ ·C₃H₆O orthorhombic, P2₁2₁2₁: *a* = 8.876(3), *b* = 21.426(7), *c* = 22.807(8) Å, *V* = 4337(3) Å³, *Z* = 4; 4614 reflections collected (198 K, Mo-Kα, 2 < 2θ < 50°; Enraf-Nonius CAD4 diffractometer).

§ C₃₁H₄₅F₃O₆Ru₃S₄, orthorhombic, *Pnma*: a = 20.089(4), b = 21.597(6), c = 8.559(2) Å, V = 3713(2) Å³, Z = 4. Of 3350 reflections collected (198 K, Mo-K α , $2 < 2\theta < 25^{\circ}$; Enraf-Nonius CAD4 diffractometer) 2236 [$F_0 > 4\sigma(F_0)$] 3350 were refined to R = 0.0441, $R_w = 0.08$. The oxygen atoms in the SO₂ and the O and F atoms in the OTf⁻ were disordered.

 $\label{eq:solution} \begin{array}{l} \label{eq:solution} \left[(C_{3}Me_{5})_{3}Ru_{3}S_{3}(SMe) \right] (PF_{6})CF_{3}SO_{3}: Dark-green crystals in 81\% \\ yield from CH_{2}Cl_{2}-THF. ^{1}H NMR (CD_{3}CN): \delta 2.09 (s, 15 H), 1.87 (s, \\ 30 H), 0.80 (s, 3 H). ^{13}C \{^{1}H \} NMR (CD_{3}CN): \delta 109.6, 109, 21.3 \\ (CH_{3}), 12.3 [C_{5}(CH_{3})_{5}], 11.3 [C_{5}(CH_{3})_{5}]. UV-VIS (nm, MeCN): 332, \\ 432, 622. FABMS (m/z): 854 (M^+), 807 (M^+ - SMe). CV (mV, vs. \\ Ag/AgCl, MeCN): +1240, -200, -740. [(C_{5}Me_{5})_{3}Ru_{3}S_{3}(SEt)]- \\ (PF_{6})CF_{3}SO_{3}: ^{1}H NMR (CD_{3}CN): \delta 2.096 (s), 1.864 (s), 1.273 (q), \\ 0.730 (t). \end{array}$

|| Monoclinic crystals, $P2_1/n$: a = 13.095(7), b = 15.672(8), c = 21.104(1) Å, $\beta = 90.53(4)^\circ$, V = 4313(3) Å³. Of 7195 unique reflections (193 K, Mo-K α : $3 < 2\theta < 52^\circ$; Stoe Stadi II diffractometer), 6330 [$F_0 > 3\sigma(F_0)$] were refined to R = 0.0547, $R_w = 0.0575$. The F atoms in the PF₆⁻ and the F and O atoms in the OTf-were disordered.

Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

** We have confirmed the solid-state structure of $C_{3\nu}$ [(C_5Me_5)₃-Mo₃S₄]Cl: H. Krautscheid, unpublished results.

References

- 1 Sutarno, O. Knop and K. I. G. Reid, Can. J. Chem., 1967, 45, 1391.
- 2 S. Harris and R. R. Chianelli, J. Catal., 1984, 86, 400.
- 3 H. Tributsch, in Sulfur, its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology, ed. A. Müller and B. Krebs, Elsevier: Amsterdam, 1984.
- 4 (a) J. Wachter, Angew. Chem., Int. Ed. Engl., 1989, 28, 1613; (b)
 R. H. Holm, Adv. Inorg. Chem., 1992, 38, 1; (c) K. E. Howard,
 T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 1988, 27, 3561;
 (d) Y. Mizobe, M. Hosomizu, J. Kawabata and M. Hidai,
 J. Chem. Soc., Chem. Commun., 1991, 1226; (e) S. Kuwata,
 Y. Mizobe and M. Hidai, J. Am. Chem. Soc., 1993, 115, 8499.
- 5 P. J. Fagan, W. S. Mahoney, J. C. Calabrese and I. D. Williams, Organometallics, 1990, 9, 1843.
- 6 E. J. Houser, S. Dev, A. E. Ogilvy, T. B. Rauchfuss and S. R. Wilson, *Organometallics*, 1993, **12**, 4678.
- 7 T. Shibahara, *Adv. Inorg. Chem.*, 1991, **37**, 143; Y. Jiang, A. Tang, R. Hoffmann, J. Huang and J. Lu, *Organometallics*, 1985, **4**, 27.
- 8 G. J. Kubas, R. R. Ryan and K. A. Kubat-Martin, J. Am. Chem. Soc., 1989, 111, 7823; A. Toupadakis, G. Kubas and C. J. Burns, Inorg. Chem., 1992, 31, 3870.
- 9 T. B. Rauchfuss, D. P. S. Rodgers and S. R. Wilson, J. Am. Chem. Soc., 1986, 108, 3114.
- 10 C. M. Bolinger, T. D. Weatherill, T. B. Rauchfuss, A. L. Rheingold, C. S. Day and S. R. Wilson, *Inorg. Chem.*, 1986, 25, 634; B. A. Cowans, R. C. Haltiwanger and M. C. Rakowski DuBois, *Organometallics*, 1987, 6, 995.
- 11 H. Brunner, H. Kauermann and J. Wachter, J. Organomet. Chem., 1984, 265, 189.
- 12 W. H. Heise, K. Lu, Y.-K. Kuo, T. J. Udovic, J. J. Rush and B. J. Tatarchuk, J. Phys. Chem., 1988, 92, 5184.