Probing the D-1,4,5-IP₃/D-1,3,4,5-IP₄ Functional Interface. Synthesis and Pharmacology of Novel D-3-Modified *myo*-Inositol Trisphosphate Analogues

Abdul H. Fauq, Alan P. Kozikowski, * A Vassil I. Ognyanov, Robert A. Wilcox and Stefan R. Nahorski

^a Neurochemistry Research, Mayo Foundation for Medical Education and Research, 4500 San Pablo Road, Jacksonville, FL 32224, USA

^b Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, MSB, University Road, Leicester, UK LE1 9HN

To explore the biological significance of the p-3 position phosphorylation of the second messenger p-myo-inositol 1,4,5-trisphosphate (IP₃) in cellular signalling, three novel p-3-substituted analogues of IP₃ have been synthesized; their binding and Ca^{2+} -release profiles at the IP₃-receptor have been studied and shown to correlate with the steric requirement of the p-3 substituent.

Phosphoinositide-based agonist stimulation of cell surface receptors and associated specific cellular responses have been the subject of intensive study in the past decade.1 Many agonists such as neutrotransmitters, hormones, and growth factors, through specific extracellular interactions, stimulate phosphatidylinositol-specific phospholipase C (PI-PLC)-catalysed hydrolysis of a minor membrane lipid component, phosphatidylinositol 4,5-bisphosphate (PIP2).1 This event gives rise to two second messengers, D-myo-inositol 1,4,5trisphosphate (IP₃) and diacylglycerol (DAG). IP₃, through its well-characterized receptor, mobilizes Ca²⁺ from intracellular stores eliciting specific cellular responses including, *inter* alia, secretion and cellular proliferation. One of the known ways by which the IP3 molecule is metabolized is through the IP₃-3-kinase-mediated phosphorylation at the D-3 position of the myo-inositol ring to form D-myo-inositol 1,3,4,5-tetrakisphosphate (IP₄).² Considerable controversy exists as to whether IP₄ possesses an independent or accessory second messenger role. Some evidence suggests that IP₄ may modulate Ca²⁺ entry across the plasma membrane.³ Indeed, IP₄-activated Ca²⁺ channels have been detected in the plasma membrane of endothelial cells.4 IP₄ can also directly mobilize intracellular Ca2+ stores, albeit less potently, in several cell types,5 and at least in SH-SY5Y cells this appears to occur via the intracellular IP₃ receptor population.^{5d,6} Hence, the production of IP₄ may well serve to attenuate the more potent IP₃-induced Ca²⁺ signal.

Another novel pathway of phosphoinositide metabolism is the PI-3-kinase-catalysed generation of D-3-phosphorylated PI's which may have second messenger actions and have been implicated in cellular proliferation. Following these important findings, which highlight the importance of the D-3 position of *myo*-inositol in multiple signalling pathways, we have synthesized a variety of both D-3-modified *myo*-inositol analogues for cell growth inhibition studies, and *myo*-inositol trisphosphates to explore the structure-activity relationships (SAR) of IP₃ receptor function.

Herein, we describe the synthesis and pharmacology of p-3-chloro-3-deoxy-myo-inositol 1,4,5-trisphosphate (3-Cl-IP₃) **1c**, p-3-bromo-3-deoxy-myo-inositol 1,4,5-trisphosphate (3-Br-IP₃) **1d**, and p-3-O-methyl-myo-inositol 1,4,5-trisphosphate (3-OMe-IP₃) **1e** (Fig. 1). These enantiomerically pure analogues together with the previously reported 3-deoxy-myo-inositol 1,4,5-trisphosphate **1a**^{9d} and 3-deoxy-3-fluoro-myo-inositol 1,4,5-trisphosphate **1b**^{9b} were designed to sys-

tematically probe the IP₃ binding subsite proximate to the D-3 position.

Synthesis of all the D-3-modified inositol trisphosphate analogues utilized L-quebrachitol (a naturally occurring cyclitol) as the starting material. Efficient syntheses of the D-3-deoxy-3-halogeno-myo-inositols (2, R = Cl, Br) were reported from these laboratories.⁸ D-3-O-Methyl-myo-inositol (2, R = OMe) (Scheme 1) was prepared by saponification and methylation of the known D-4-O-benzyl-3-Ocamphanoyl-1,2:5,6-di-O-cyclohexylidene-myo-inositol, ¹⁰ followed by debenzylation and acidic hydrolysis of the cyclohexylidene groups. Acid-catalysed acetalization of each of the cyclitols 2 gave the bis-acetonides 3 and 4 in ratios ranging between 1:3 to 1:5.† The undesired regioisomer 3 could be recycled to the desired isomer 4 by acid-catalysed equilibration.

Partial acidic hydrolysis of the *trans*-acetonide, followed by benzoylation provided the dibenzoate **5**. After removal of the remaining *cis*-acetonide, the equatorial 1-OH group was selectively benzoylated. The 2-OH group was blocked by treatment with ethyl vinyl ether and camphorsulfonic acid. The resulting tribenzoate **6** was saponified to furnish the 1,4,5-triol which could be trisphosphorylated to provide compound

Scheme 1 Synthesis of the analogues 1c-e, R = Cl, Br, or OMe. Yields indicated in parentheses are in the same order. (EE = 1-ethoxyethyl.)

Reagents and conditions: i, 2-methoxypropene, camphorsulfonic acid, DMF, 70 °C, 4–5 h, (79, 89, 76%); ii, separation; iii, NaH, benzyl bromide (BnBr), DMF, 0 °C, 2–16 h, (96, 95, 98%); iv, AcCl (cat), MeOH, CH₂Cl₂, 1 h, (86, 67, 73%); v, BzCl, Py, room temp., 2 h, (93, 98, 98%); vi, AcCl, MeOH, 4–16 h, (100, 98, 98%); vii, BzCl, Py, room temp. 16–40 h, (93, 77, 72%); viii, ethyl vinyl ether, pyridium toluene-*p*-sulfonate, CH₂Cl₂, 3–16 h, (95, 91, 98%); ix, K₂CO₃, MeOH, room temp. (16–24 h), (100, 67, 76%); x, dibenzyl N, N'-diisopropylphosphoramidite, 1H-tetrazole, CH₂Cl₂, room temp. 4–16 h, then Bu¹OOH, CH₂Cl₂, (69%, 67%) (R = Cl, Br); NaH, tetrabenzyl pyrophosphate, DMF, 16 h, (76%), (R = OMe); xi, H₂, 10% Pd–C, EtOH, 40 psi, 12–16 h, (97, 90, 92%); xii, titrate with 1 mol dm⁻³ NaOH.

either by treatment with dibenzyl N, N'-diisopropylphosphoramidite followed by tert-butyl hydroperoxide, or by treatment of its derived trialkoxide with tetrabenzyl pyrophosphate.¹¹ Hydrogenolysis of 7 occurred uneventfully concurrent with in situ hydrolysis of the ethoxyethyl group and provided 3-Cl-IP₃ 1c, 3-Br-IP₃ 1d, and 3-OMe-IP₃ 1e in reasonable overall yields.‡

We^{9,12} and others¹³ have reported recently some structureactivity relationship (SAR) data concerning the importance of the phosphate and hydroxy groups of the IP₃ molecule. It is now known that: (i) by and large, the vicinal 4,5-bisphosphate moiety is essential for Ca²⁺ mobilization, (ii) the 1-phosphate group enhances potency, and (iii) the 6-OH group is crucial to activity. The removal ^{9d,e} or modification¹⁴ of the 2-OH group does not seem to significantly attenuate the Ca2+ release response. However, the role of the 3-OH has been less well understood. Whereas deoxygenation 9d or substitution of OH by fluorine9b at the D-3 position of IP3 does not affect Ca2+ releasing ability significantly, L-chiro-2,3,5-IP3, in which an axial OH group is located at what would be the D-3 position of IP₃, is much less potent.¹⁵ As noted previously, phosphorylation of the D-3 position may act to attenuate the Ca²⁺ releasing signal, a possibility that could be rigorously explored by studying the IP₃ analogues 1a-e. This structural series embodies a gradation in the steric bulk of the 3-substituent. The pharmacological evaluation of the analogues 1a-e for competitive IP₃ binding and Ca²⁺ release in permeabilized SH-SY5Y neuroblastoma cells, are presented in Table 1 in the form of IC₅₀ and EC₅₀ values, respectively. A good correlation was found between binding (IC₅₀) and functional (EC₅₀) data. Analogues 1a and 1b are similar to IP₃ in binding and Ca²⁺ releasing activity, but as the size of the D-3-substituent increases from H and F to Cl, Br, and OCH₃, § the binding and the Ca²⁺-releasing activity of the analogues sharply declines in that order (Table 1). A 12-, 21-, and 148-fold difference between the EC_{50} data of IP_3 , and 3-Cl- IP_3 1c, 3-Br- IP_3 1d, and 3-OMe-IP₃ 1e, respectively, strongly suggests that IP₃ receptor function is highly sensitive to the steric bulk of the D-3 substituent. More importantly, with respect to IP₃ receptor binding and function, the analogues, with increasing bulk at position 3, smoothly switched from being IP₃-like (as in 1a and 1b) to being IP₄-like (as in 1d and 1e). In addition, these data lead us to postulate that, at least for the purpose of termination or attenuation of the signal, it may be the steric bulk rather than the charge on the 3-phosphate moiety which determines this specific role of 1,3,4,5-IP₄. 3-Cl-IP₃ 1c, having an intermediate-sized substituent, represents an intermediate stage between the IP₃- and IP₄-like pharmacology at the IP₃ receptor.

Table 1 The IP₃ receptor binding and Ca²⁺ release profiles of IP₃ and analogues 1a-ea

Analogue	IC ₅₀ / nmol dm ⁻³	EC ₅₀ / nmol dm ⁻³
1,4,5-IP ₃	4.4 ± 0.1	52.1 ± 2.3
1a	30.3 ± 2.0	155.7 ± 20.1
1b	12.6 ± 0.1	120.2 ± 10.9
1c	32.0 ± 1.4	639.8 ± 77.9
1d	69.5 ± 5.2	1100 ± 100
1e	271.1 ± 25.6	7700 ± 1100

a Displacement of specific IP3 receptor [3H]-IP3 binding from bovine adrenal cortex membranes and Ca2+ release via the intracellular IP3 receptor of SH-SY5Y cells were used to determine IC50 and EC50 values, respectively. Results represent the average of at least four experiments.

In conclusion, our current findings, specifically directed at the IP₃/IP₄ interface, suggest that phosphorylation at the D-3 position by IP₃-3-kinase may be the physiological mechanism which dissects the biological function of these two important polyphosphates at the IP₃ receptor. Further studies of the interaction of these compounds with the putative membrane 1,3,4,5-IP₄ binding sites are in progress and will be reported in

Financial support from the National Institute on Aging (A. P. K.) and the Wellcome Trust (R. A. W. and S. R. N.) is gratefully acknowledged.

Received, 25th January 1994; Com. 4/00479E

Footnotes

- † The diacetonides 3 and 4 were separated by silica-gel chromatography, or crystallization except for the corresponding 3-OMe analogues which could be separated only after benzylation.
- ‡ The structures of all the reported compounds were established by a combination of ¹H, ¹³C, and ³¹P NMR spectroscopy
- § Molecular volumes, as calculated with the SYBYL program (Version 5.41), for F, Cl, Br, and OMe substituents are 10.1, 19.4, 25.2, and 30.1 Å³, respectively. SYBYL (Version 5.41), Tripos Associates Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 63144, 1991. We are thankful to Terry Hashey for calculating these values.

References

- 1 Reviews: M. J. Berridge, Nature, 1993, 361, 315; M. J. Berridge and R. F. Irvine, Nature, 1989, 341, 197.
- G. R. Batty, S. R. Nahorski and R. F. Irvine, Biochem. J., 1985, 232, 211.
- 3 R. F. Irvine, in Inositol Phosphates and Calcium Signalling, ed. J. W. Putney, Raven Press, New York, 1992, p. 161; R. F. Irvine, FEBS Lett., 1990, 263, 5; (c) R. F. Irvine, Bioessays, 1991, 13, 419.
- 4 A. Lückhoff and D. E. Clapham, Nature, 1992, 355, 356.
- 5 (a) S. K. Joseph, C. A. Hansen and J. R. Williamson, Mol. Pharmacol., 1989, 36, 391; (b) J. A. Ely, L. Hunyardy, A. J. Baukal and K. J. Catt, Biochem. J., 1990, 268, 333; (c) I. Parker and I. Ivorra, J. Physiol., 1991, 433, 207; (d) D. J. Gawler, B. V. L. Potter, R. Gigg and S. R. Nahorski, Biochem. J., 1991, 276, 163.
- 6 R. A. Wilcox, R. A. J. Challiss, C. Liu, B. V. L. Potter and S. R. Nahorski, Mol. Pharmacol., 1993 in the press.
- 7 D. R. Kaplan, M. Whitman, B. Schaffhausen, D. C. Pallas, M. White, L. Cantley and T. M. Roberts, Cell, 1987, 50, 1021; C. P. Downes and A. N. Cartner, Cell. Signalling, 1991, 3, 501.
- 8 G. Powis, I. A. Aksoy, D. C. Melder, S. Aksoy, H. Eichinger, A. H. Fauq and A. P. Kozikowski, Cancer Chemother. Pharmacol., 1991, 29, 95.
- 9 (a) A. P. Kozikowski, A. H. Fauq and J. M. Rusnak, Tetrahedron Lett., 1989, 3365; (b) A. P. Kozikowski, A. H. Fauq, G. A. Aksoy, M. J. Seewald and G. Powis, J. Am. Chem. Soc., 1990, 112, 7403; (c) A. P. Kozikowski, A. H. Fauq, G. Powis and D. C. Melder, Med. Chem. Res., 1991, 1, 277; (d) A. P. Kozikowski and A. H. Fauq, J. Chem. Soc., Chem. Commun., 1990, 1638; (e) A. P. Kozikowski, V. I. Ognyanov, A. H. Fauq, S. R. Nahorski and R. A. Wilcox, J. Am. Chem. Soc., 1993, 115, 4429.
- 10 J. P. Vacca, S. J. deSolms and J. R. Huff, *J. Am. Chem. Soc.*, 1987, **109**, 3478.
- 11 H. Khorana and A. R. Todd, *J. Chem. Soc.*, 1953, 2257.
 12 A. P. Kozikowski, V. I. Ognyanov, C. Chen, A. H. Fauq, S. T. Safrany, R. A. Wilcox and S. R. Nahorski, J. Med. Chem., 1993, 36, 3035 and references cited therein.
- 13 M. Hirata, Y. Watanabe, M. Yoshida, T. Koga and S. Ozaki, J. Biol. Chem. 1993, 268, 19260.
- 14 M. Hirata, F. Yanaga, T. Koga, T. Ogasawara, Y. Watanabe and S. Ozaki, J. Biol. Chem., 1990, 265, 8404.

 15 S. T. Safrany, R. A. Wilcox, C. Liu, B. V. L. Potter and S. R.
- Nahorski, Eur. J. Pharmacol., 1992, 226, 265.