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The First [2.2]Cyclophane with Free N-H in the Bridge 
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The synthesis, absolute configuration, chiroptical properties and hydrogen bonding of the helical-chiral title 
compound 1 are reported, which is the first strained [2.2]phane that has an unsubstituted nitrogen in the bridge; an 
X-ray structure analysis shows 1 to crystallise spontaneously enantiomerically pure, and the presence of the sulfur 
atom allowed the determination of the absolute configuration of the (-)-enantiomer to be established as a 
left-handed (M) helix. 

[2.2]Metacyclophanes of type 3 and 4 have proved to be 
inherently helical-chiral due to the different length of their two 
bridges.' Their helicity and transannular strain can be tailored 
gradually by using different bridge atoms X. The resulting 
propeller-shaped molecules are interesting objects for study- 
ing deformation ,2 spectroscopic consequences3 and relations 
between structure and circular dichroism (CD) .4 

Apart from the known N-tosyl-substituted compounds 3 
and 4, no free l-aza[2.2]phane could be prepared as yet. They 
are interesting with regard to nitrogen inversion in strained 
rings5 and they could also serve in asymmetric synthesis, using 
the helicity of the [2.2]metacyclophane skeleton as chiral 
information. Fixing chromophores (e.g. NO, NO2, halogen) 
at the nitrogen atom would lead to chiral compounds relevant 
for structure-chiroptics correlations and comparison with 
substituted aziridines6 and pyrrolidines.7 

The reason why all hitherto known aza[2.2]cyclophanes are 
N-tosylatedg is that the tosyl group (p-MeC6H4S02) was 
considered to be necessary for activating the nitrogen and to 
promote the formation of the ten-membered cycle. All 
attempts to remove it after synthesis were unsuccessful for 
strained N-heterocycles. 

The tosyl group has a strong electronic and steric influence 
on nitrogen and this makes the comparison of experimental 
results (CD, X-ray) with theoretical calculations difficult. 
Moreover, the large tosyl group hinders the separation of the 
enantiomers by HPLC. 

In order to yield the free amine 1 for the first time, we 
prepared the hitherto unknown trifluoroacetyl (TFA) substi- 
tuted cyclophane 2 (Scheme 1). By using the dilution principle 
and the solvent combination acetone-DMF, we reduced the 
0-alkylation side-reaction and obtained 2 in 40% yield,? 
which is surprisingly high for C-X-coupling reactions to such 
strained compounds. 
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The crystal structure$ of 2 (Fig. 1) shows a nearly planar 
geometry at nitrogen (bond angles at nitrogen 119,127, llS0), 
similar to the corresponding N-tosyl compound 3.9 

Abstraction of the TFA-protecting group yielded the 
desired free amine 1 in quantitative yield by simple hydrolysis 
under smooth conditions.? Both racemates 1 and 2 could be 
split into the enantiomers by HPLC, using chiral column 
material.§ The CD spectra (Fig. 2) were measured down to 

~(181)  

Fig. 1 X-Ray crystal structure of 2 (perspective view) 
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Scheme 1 i ,  Acetone-DMF-CsZCO3 (high dilution); i i ,  KOH-MeOH 
Fig. 2 CD spectra of M(-)-1 (-), M(-)-2 (---), and (-)-3 ( 0 . e . ) ;  

solvent hexafluoropropan-2-01 



1362 J. CHEM. SOC., CHEM. COMMUN., 1994 

Fig. 3 X-Ray structure of M( -)-1 

short wavelength (180 nm), which allowed the investigation of 
aromatic transitions. With the tosylamides 3 and 4, interpreta- 
tions of such transitions were not possible. The curves show, 
compared with the tosyl compound 3, a finer resolution of 
single Cotton effects (CE), allowing a better assignment of the 
corresponding transitions, whereas the CD of 3 contains too 
many transitions caused by the additional tosyl chromophore, 
which overlap with the CD of the metacylophane skeleton. 

l-Thia-lO-aza[2.2]metacyclophane 1 remarkably crystal- 
lises spontaneously as pure enantiomers. The presence of the 
sulfur atom in the molecule enables the determination of the 
absolute configuration using anomalous dispersion of X-rays 
(Fig. 3) .8  The helicity was determined as M (left-handed) for 
( - ) - l . * o  The assignment of the configuration to the CD 
spectra of M(-)-1  could be ascertained by measuring the CD 
spectra of the crystal used for the X-ray analysis. Correspond- 
ing to  this assignment, the helicity of 2 can be assumed to  be 
the same as for M(-)-1 ,  because the transitions responsible 
for the CD are known, and are of equal sign for both 
compounds. 

The crystal structure of M( - ) - 1  (Fig. 3 )  shows a remarkably 
short intermolecular N-H---N distance of 233 pm, leading to  
the formation of dimeric species in the solid state. These pairs 
are stacked, resulting in a channel structure. The formation of 
the chiral crystal is probably favoured by this hydrogen bond 
pattern. The nitrogen atom of the amine has a pyramidal 
geometry, with C(9)-N(lO)-C(ll) 112", so that there are two 
possible positions for the hydrogen. Calculations indicate that 
these are energetically nearly degenerate and there is only a 
very small barrier for this type of inversion process.11 The 
classical pyramidal inversion at nitrogen (complete intercon- 
version of the two enantiomers) is not possible because of the 
rigidity of the [2.2]metacyclophane skeleton.12 

The possibility of fixing suitable substituents (chromo- 
phores) at the nitrogen atom of 1 ,  combined with further 
theoretical studies, is expected to result in new knowledge 
about the inversion behaviour of nitrogen, and will be the 
object of future work. 
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Footnotes 
? Selected data (1 and 2 gave analytical data fully consistent with their 
structures): 1, mp 137"C, 'H NMR (CDC13) 6 2.80 (s, lH ,  D20 
exchangeable), 4.35 (t, lH ,  Hi), 4.63 (t, lH ,  Hi); 2, mp 122"C, 'H 

$ Crystallographic data for M(-)-1: Cl4HI3NS, M = 227.3, ortho- 
rhombic, space group f212121, colourless crystals, dimensions 0.55 x 
0.15 x 0.05 mm, a = 5.178(1), b = 13.239(1), c = 16.467(1) A, V = 
1128.8(2) &, D, = 1.34 g ~ m - ~ ,  Z = 4, p(Cu-Ka) = 2.27 mm-I, T = 
193 K, 1672 symmetry independent reflections were used for the 
structure solution (direct methods) and refinement (full-matrix least 
squares on F, 148 parameters), non-hydrogen atoms were refined 
anisotropically , H-atoms localised by difference electron density and 
refined using a 'riding' model, the H(N) was refined free. wR2 = 
0.126{R1 = 0.051[1> 2a(f)]}. A semiempirical absorption correction 
on the basis of q-scans was applied. Absolute structure parameterx = 
-0.02(4) (Flack parameter). 

Crystallographic data for 2: C16H12F3NOS, M = 323.3, monoclinic, 
space group P21/c, a = 5.428(1), b = 16.478(1), c = 16.607(1) A, p = 
98.66(1)", V = 1468.4(3) A3, D, = 1.46 g cm-3, Z = 4, p(Cu-Ka) = 
2.29 mm-l, T = 293 K, 2501 symmetry independent reflections were 
used for the structure solution (direct methods) and refinement 
(full-matrix least squares on  F, 200 parameters), non-hydrogen 
atoms were refined anisotropically , H-atoms localised by difference 
electron density and refined using a 'riding' model. wR2 = O.218{ R1 = 
0.065[1 > 2o(I)]}. Extinction and semiempirical absorption correc- 
tions (q-scans) were applied. Atomic coordinates, bond lengths and 
angles, and thermal parameters have been deposited at the Cam- 
bridge Crystallographic Data Centre. See Information for Authors, 
Issue No. 1. 
0 Chromatographic separation: 1, Chiralpak OP stationary phase, 
solvent n-hexane-propan-2-01 (95 : 5); 2, Chiracel OD, n-hexane- 
propan-2-01 (99 : 1) 

NMR (CDC13) 6 4.60 (t, lH ,  Hi), 4.72 (t, lH ,  Hi). 
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