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A single diastereoisomer of (-)-menthylmesitylphosphine has been isolated in 94% purity, thereby effecting the 
first resolution of a free secondary phosphine chiral at phosphorus. 

Although the first resolution of a simple acyclic tertiary 
phosphine chiral at phosphorus was reported in 1961,1 the 
resolution of a similar secondary phosphine does not appear to 
have been investigated hitherto, despite the observation by 
NMR spectroscopy of diastereoisomers of compounds due to 
slow inversion at a pyramidal secondary phosphine-P stereo- 
centre.2.3 The amphoteric nature of a secondary phosphine, in 
particular its basicity (protonation of a chiral secondary 
phosphine produces an achiral phosphonium ion)$ is the chief 
reason for sensitivity to racemisation of such compounds. 
Thus, when protected from protons by coordination to metal 
ions [M+ t PHRlR2],5 borane [H3B t PHRlR2],6 or 
chalcogens [X t PHRlR2, where X = 0, S,  or Se],7 
secondary phosphines have been resolved, but recovery of the 
optically active secondary phosphines from the adducts has 
not been accomplished. Here we report that the dia- 
stereoisomers of (-)-menthylmesitylphosphine (Fig. l) can 
be separated by fractional crystallisation of the mixture from 
acetonitrile containing sodium acetylacetonate (Na[acac]) as 
proton scavenger, thereby effecting the first resolution of a 
free secondary phosphine chiral at phosphorus. In 1979 the 
synthesis of ( - )-menthylphenylphosphine was reported but 
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Fig. 1 Diastereoisomers of (-)-menthylmesitylphosphine 
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Fig. 2 31P{ 'H} NMR spectrum of (-)-menthylmesitylphosphine in 
CD3CN (cquilibrium mixture) (a); similar spectrum of secondary 
phosphine in CD3CN-Na[acac] showing enrichment of one diastereo- 
isomer (b)  

no attempts were made to separate the pair of diastereo- 
isomers observed.3 

Treatment of dichloromesitylphosphine with (-)-menthyl- 
magnesium chloride (1.14 equiv.) in THF at -78°C affords 
chloromenthylmesitylphosphine in high yield as an equimolar 
mixture of the two diastereoisomers epimeric at phosphorus 
according to the 31P{lH} NMR spectrum. Upon reduction 
with LAH in diethyl ether, the secondary chlorophosphine 
yields (-)-menthylmesitylphosphine in 48% yield after seven 
recrystallisations from highly purified acetonitrile.8 The 
almost air-stable product crystallizes from hot acetonitrile as 
long needles having mp 79-88"C, and is readily soluble in 
benzene, dichloromethane, diethyl ether and n-hexane.? In 
[2H6]benzene, the 31P{lH} NMR spectrum of the phosphine 
consists of two singlets for the pair of diastereoisomers at 
6 -62.62 (55%) and 6 -84.24 (45%). In [2H3]acetonitrile, the 
signals for the diastereoisomers appear at 6 -63.47 (43%) and 
6 -85.16 (57%) [Fig. 2(a)]. Attempted fractional crystallisa- 
tion of the equilibrium mixture from neat acetonitrile met with 
no success. When repeated in acetonitrile containing sodium 
acetylacetonate (0.04% m/v) over the temperature range of 60 
-35 "C however, the fractional crystallisation of the mixture 
(20 g I-l) afforded ca. 50% of the material enriched in the 
diastereoisomer having 6 - 85.16, while the mother liquor was 
correspondingly enriched in the diastereoisomer having 6 
-63.47.$ The progress of the separation was monitored by 
recording the 31P{1H) NMR spectra of the various fractions in 
ace tonitrile containing 0.04% sodium ace t ylace tonate. Six 
consecutive recrystallisations of the less soluble component of 
the mixture from the solvent containing base gave the 
diastereoisomer having 6 -85.16 in 94% purity, as indicated 
in Fig. 2(b) .  Dissolution of the enriched diastereoisomer in 
highly purified acetonitrile in the absence of the base led to 
immediate epimerization at phosphorus and the establishment 
of the equilibrium 43 : 57 mixture of the diastereoisomers 
within the time of recording the NMR spectrum (ca. 5 min). 
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Footnotes 
t Satisfactory elemental analyses were obtained. 
$ Selected spectroscopic data for less soluble diastereoisomer: 1H 
NMR (299.95 MHz, CD3CN containing 0.04% Na[acac]) 6 0.714 (d, 

(d, 3JHH 6.90 Hz, 3 H, CHMe2), 0.70-1.36 (m, 6 H, unresolved), 1.62- 
1.76 (m, 2 H,  unresolved), 1.96-2.08 (m, 1 H, CHMe2). 2.13-2.23 (m, 
1 H, PCH), 2.23 (s, 3 H, p-Me), 2.47 (s, 6 H, o-Me), 4.37 (d of d, 1JHp 

3 . f ~ ~  6.60 HZ, 3 H, CHMe), 0.84 (d, 3 J ~ ~  6.00 Hz, 3 H, CHMe2), 0.95 

215.36 Hz, 3JHH 5.85 Hz, 1 H, PH), 6.90-6.93 (m, 2 H, 
aromatics); 31P{1H} (80.98 MHz, C6D6, ref. H3P04) 6 -84.24; IR 
(KBr) vpH/cm-l 2318 cm-l; MS m/z 290 (C19H31P, M.+); [a],, -186 
(c 0.273, MeCN containing 0.04% Na[acac]) (purity 94%). 

For more soluble diastereoisomer: lH NMR (299.95 MHz, CD3CN 
containing 0.04% Na(acac1) 6 0.708 (d, 3.fHH 6.60 Hz, 3 H, CHMe), 

CHMe2). 0.68-1.35 (m, 5 H, unresolved), 1.48-1.58 (m, 1 H, 
unresolved), 1.63-1.73 (m, 2 H, unresolved), 1.75-1.89 (m, 1 H, 
PCH), 2.22 (s, 3 H, p-Me), 2.37 (s, 6 H, o-Me), 2.38-2.48 (m, 1 H, 

6.90 (m,  2 H, aromatics); 31P{1H} (80.98 MHz, C6D6, ref. H3P04) 6 
-62.62; IR (KBr) vPH/cm-l 2338. 

0.77 (d, 3 J ~ ~  6.90 Hz, 3 H,  CHMe2), 0.94 (d, 3 J ~ ~  6.90 Hz, 3 H,  

Cffhfq), 3.90 (d Of d, l J ~ p  216.56 HZ, 3 J ~ ~  9.45 Hz, 1 H, PH), 6.86- 
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