Preparation and Characterisation of a Palladium-Copper Heterometallic Complex and its Catalytic Activity towards Oxidation of Alkenes

Takahiro Hosokawa," a Minoru Takano,a Shun-lchi Murahashi," *a* **Hiroshi Ozaki,b Yasuyuki Kitagawa,b Ken-ichi Sakaguchi**^b and Yukiteru Katsube^b

a Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560, Japan

b Protein Research Institute, Osaka University, Suita, Osaka 565, Japan

Treatment of PdCl₂(MeCN)₂ and CuCl₂ with pyrrolidin-2-one L gives a novel Pd-Cu heterometallic complex having a polymeric structure of [CICu(L)₄(µ-CI)PdCl₂·PdCl₂]_n which catalyses the oxidation of cyclohexene in CICH₂CH₂CI-MeOH.

A combination of palladium(n) and copper salts effects a variety of oxidations of alkenes,¹ among which the Wacker oxidation of ethene to acetaldehyde in water is the most fundamental. In contrast to this well known process, we recently found that alk-1-enes are oxidised directly by molecular oxygen in anhydrous, aprotic solvents.2 This finding reinforces our proposal³ that a heterometallic species consisting of Pd and Cu is involved in these type of oxidations. However, the isolation and characterisation of such a complex has not been reported. We report here the preparation of a Pd-Cu heterometallic complex and its catalytic activity towards the oxidation of alkenes.

The reaction of $PdCl_2(MeCN)_2$ (520 mg, 2 mmol) and $CuCl₂$ (135 mg, 1 mmol) with excess amount of **L** (850 mg, 10) mmol) in $CH₂Cl₂$ (20 ml) under argon at room temperature gave a red-brown precipitate (795 mg) in 0.5 h. Recrystallisation of the crude complex from CH_2Cl_2 -MeOH-ether $(10:1:20)$ afforded dark brown crystals $(1, 631$ mg, 76%, mp 147-151 °C decomp) of $CuCl₂(L)₄(PdCl₂)₂$ [eqn (1)] which were suitable for X-ray analysis. 1 can also be obtained by using CuCl (Pd : Cu : $L = 1 : 1 : 10$) with O_2 in dimethoxyethane (DME) under the same conditions (88% yield based on Pd), since CuCl is oxidised to CuCl₂ by O_2 in aprotic solvents. (10:1:20) afforded dark brown crystals (1, 631 mg, 76%, mp

147–151 °C decomp) of CuCl₂(L)₄(PdCl₂)₂ [eqn (1)] which convere suitable for X-ray analysis. 1 can also be obtained by casing CuCl (Pd:Cu:L = 1:1:10) wit

2 PdCl₂(MeCN)₂ + CuCl₂
$$
\frac{L}{CH_2Cl_2}
$$
 [CuCl₂(L)₄(PdCl₂)₂]_n (1)

X-ray diffraction of 1 (Fig. 1) \dagger revealed a polymeric structure which consisted of alternative units of $CuCl₂(L)₄$ and dimeric PdCl₂. The Cu and Pd units are linked by μ -Cl atoms. Since the Cu-CI and Pd-CI bond distances are normal [Cu-Cl(1), 2.823(1); Cl(1)-Pd(1), 2.271(1) Å; Cu-Cl(1)-Pd(1), $114.06(5)$ °], the complex is certainly heterometallic. The Cu atom is on a crystallographic centre of symmetry and is arranged in a tetragonal bipyramidal structure by two μ -Cl atoms and four amides **L.** The four amides coordinate to the Cu atom *via* their carbonyl groups, forming a square planar plane. The bond lengths between Cu and the amide oxygen atoms [Cu-O(1), $1.941(3)$ Å; Cu-O(2), $1.986(4)$ Å] are normal.4 The adjacent amides are linked to each other through a N-H \cdots O hydrogen bond [H(N1)-O(2), 2.08(6) Å; $N(1)-O(2) = 2.815(5)$ \AA ; $N(1)-H(N1)\cdots O(2)$, 143(5)^o],^{4b} and the other N-H bond is linked with two CI atoms *via* N-H...CI

hydrogen bonds $[H(N2)\cdots Cl(1), 2.76(6) \text{ Å}; N(2)$ - $H(N2)\cdots Cl(1)$, 141(5)^o, and $H(N2)\cdots Cl(2)$, 2.58(6) Å; N(2)- $H(N2)\cdots Cl(2)$, 143(5)].⁵ Among these are precedents for heterometallic complexes linked with μ -Cl atoms, such as Pd-Al,⁶ Pd-Sn,⁷ and Pt-Ag,⁸ there is no unambiguous example of a Pd-Cu complex, though such complexes have been proposed to be involved in oxidations of alkenes. 3.9

The polymeric complex 1 can be recrystallised from a solution of CICH₂CH₂Cl–MeOH $(10:1)$, in which the heterometallic structure of 1 is intact. Accordingly, the catalytic oxidation of alkenes with the complex 1 was examined in CICH₂CH₂Cl-MeOH (10:1) under O_2 . The oxidation of cyclohexene under the conditions shown in eqn. *(2)* (6 h, 50 *"C)* gave a mixture of cyclohexanone **2** and 2-cyclohexenl-one **3** (80:20) in 1710% yield (based on Pd). For this oxidation, one may consider that the complex **1** decomposes into its components and acts as a catalyst. However, such a possibility is excluded by the following fact. Since complex **1** is composed of PdCl₂, CuCl₂, and L in a ratio of 2:1:4, a catalyst was prepared *in situ* by mixing these components in this ratio at 50 \degree C for 10 min. When cyclohexene was oxidised with this prepared catalyst a 360% yield of **2** and **3** (88 : 12) was formed in $\vec{6}$ h. Obviously, the catalytic efficiency of this catalyst is inferior to that of **1** itself. Therefore, it can be said that the oxidation shown in eqn. (2) is not effected by a simple combination of the components of **1.** Of course, no effective oxidation occurs using $PdCl₂$ catalyst alone (170%) or a

Fig. 1 ORTEP drawing of a part of polymeric complex **I** with adopted atom numbering scheme. Hydrogen atoms on carbon atoms were omitted for clarity. Selected bond length (\hat{A}) and angles $(°)$ with esds in parentheses: Cu-Cl(1) 2.823(1), Pd(1)-CI(1) 2.271(1). Pd(1)-Cl(2) 2.264(1), Pd(1)–Cl(3) 2.329(1), Pd(1)–Cl(3') 2.331(1), Cu–O(1) 1.943(1), $Cu-O(2)$ 1.986(4), $H(N1) \cdots O(2)$ 2.08(6), $H(N2) \cdots Cl(1)$ 2.76(6). H(N2)**.C1(2) *2.58(6);* Cu-Cl(l)-Pd(l) 114.06(5). C1(1)- $Pd(1) - Cl(2)$ 90.89(5), $Cl(2) - Pd(1) - Cl(3)$ 90.93(5), $Cl(3) - Pd(1) Cl(3')$ 86.52(5), $Cl(3')-Pd(1)-Cl(1)$ 91.80(5), $O(1)-Cu-Cl(1)$ Cl(3[']) 86.52(5), Cl(3')-Pd(1)-Cl(1) 91.80(5), O(1)-Cu-Cl(1)
88.50(11), O(2)-Cu-Cl(1) 90.70(11), O(1)-Cu-O(2) 93.44(15), N(1)-
H(N1)…O(2) 143(5), N(2)-H(N2)…Cl(1) 141(5), N(2)- $H(N1)\cdots O(2)$ 143(5), $N(2)$ -H($N2$) \cdots Cl(1) 141(5), $N(2)$ - $H(N2)\cdots Cl(2)$ 143(5).

combination with the amide **L (2** equiv. to Pd) **(70%).** Under the reaction conditions shown in eqn. **(2),** the polymeric structure of **1** is possibly cleaved by coordination of the alkene to a $PdCl₂$ unit to form a $Pd-Cu-Pd$ heterometallic complex which acts as a real catalyst. In general, the PdII-catalysed ketonisation of cyclohexene does not proceed effectively in the conventional manner.10 The present result is not unexceptional; however, it provides the first example that oxidations of this type are brought about by a Pd-Cu heterometallic catalyst.

Received, 12th January 1994; Corn. 41001876

Footnote

t *Crystal Data* for 1: C16H28N404Pd2CUC16, *M,* = 829.49, dark brown crystal $(0.2 \times 0.2 \times 0.4 \text{ mm})$, monoclinic, space group $P2_1/c$ (No. 14), $a = 10.8184(19), b = 13.3823(16), c = 10.4782(20)$ Å, $\beta =$ 115.780(14)°, $U = 1365.99(43)$ Å³ (by least-squares refinement on diffractometer angles for 25 centred reflections using graphite monochromated Mo-K α radiation, $\lambda = 0.71069$ Å), $Z = 2$, $D_c = 2.02$ $g \text{ cm}^{-3}$, $\mu = 26.9 \text{ cm}^{-1}$, $F(000) = 814$. Automated Four-Circle Diffractometer (Rigaku C4), ω -20 mode with $\Delta \omega$ = 1.40 + 0.35 tan0, w-scan speed = 4° ·min⁻¹, T = 295 K, 6496 reflections measured (1.5) $\leq \theta \leq 35$, $\pm h$, *k*, *l*), 6009 unique [merging *R* = 0.039 after empirical absorption correction (max., min. transmission factors = $1.22, 0.99$)], giving 4285 with $F_0 > 3\sigma(F_0)$. The structure was partly solved by using the SHELXS 86 and the remaining non-hydrogen atoms were located in succeeding difference Fourier synthesis. Refinement was started by the block diagonal least-squares and finally by the full matrix leastsquares method; final *R* and R_w values are 0.047, 0.068, $S = 1.26$, $(\dot{\Delta} \rho)$ max, min = +0.90, -0.80 eÅ⁻³ near Pd atom on a final difference map. All non-hydrogen atoms were refined with anisotropic thermal parameters. Amide hydrogen atoms were located on a difference Fourier map and refined isotropically. Other hydrogen atoms were included in the calculation with the isotropic temperature parameter B_{Hi} (= B_{eq} of respective carrier atom) on calculated positions $(C-H = 0.98$ Å) riding on their carrier atoms. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 P. M. Henry, *Palladium Catalyzed Oxidation of Hydrocarbons,* Reidel, Dordrecht, 1980; J. Tsuji, *Synthesis,* 1984, 369; J. Tsuji, *Organic Synthesis with Palladium Compounds,* Springer-Verlag, Berlin, 1980; B. M. Trost and T. R. Verhoeven, *Comprehensive Organometallic Chemistry,* vol. 8, ed. G. Wilkinson, Oxford, 1982, pp. 854-983; P. M. Maitlis, *The Organic Chemistry of Palladium,* vol. 2, Academic Press, 1971, pp. 77-101.
- 2 T. Hosokwa, S. Aoki, M. Takano, T. Nakahira, Y. Yoshida and S.-I. Murahashi, J. *Chem. SOC., Chem. Commun.,* 1991, 1559; T. Hosokawa, T. Nakahira, M. Takano and S.-I. Murahashi, J. Mol. *Catal.,* 1992, 74,489.
- **3** T. Hosokawa and **S.-I.** Murahashi, *Acc. Chem. Res.,* 1990,23,49; T. Hosokawa, T. Uno, S. Inui and S.-I. Murahashi, J. *Am. Chem.* Soc., 1981, 103, 2318.
- 4 *(u)* G. Davies, M. F. El-Shazly, M. W. Rupich, M. R. Churchill and F. J. Rotella, *J. Chem. Soc., Chem. Commun.,* 1978,1045; *(b)* A. J. Blake and R. E. P. Winpenny, *Acta Cryst.,* 1993, C49,799.
- *5* For crystallographic data of the hydrogen bond between N and C1 atoms, see: A. Bacchi, F. Ferranti and G. Pelizzi, *Acta Cryst.,* 1993, C49, 1163.
- *6* W. Lenhard, H. Schafer, H.-U. Hurter and B. Krebs, *2. Anorg. Allg. Chem.,* 1981, **482,** 19; H. Schafer, *Adv. Znorg. Chem. Radiochem.,* 1983, 26, 201.
- 7 G. L. Elizarova, L. G. Matvienko, E. N. Yurchenko and R. N. Stukova, *Soviet* J. *Coord. Chem.,* 1980, 6, 867.
- 8 R. Usón, J. Forniés, M. Tomás, J. M. Casas, F. A. Cotton and L. R. Falvello, *Inorg. Chem.*, 1986, 25, 4519.
- 9 K. Takehira, T. Hayakawa, H. Orita and M. Shimizu, J. Mol. *Catal.,* 1989, 53, 15; **J.-Y.** Lai, **X.-X.** Shi, **Y.-S.** Gong and L. X. Dai, J. *Org. Chem.,* 1993, 58, 4775.
- 10 D. G. Miller and D. D. M. Wayner, J. *Org. Chem.,* 1990,55,2924; K. Takehira. I. H. Oh, V. C. Martinez, R. S. Chavira, T. Hayakawa, H. Orita, M. Shimidzu and T. Ishikawa, J. Mol. Catal., 1987, 42, 237.