Palladium-catalysed Carbonyl Allylation by Isoprene *via* Regioselective 1,4-Addition of Tin Hydride formed *in situ*

Yoshiro Masuyama,* Megumi Tsunoda and Yasuhiko Kurusu

Department of Chemistry, Sophia University 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

Isoprene reacts with aldehydes in the presence of a catalytic amount of $Pd(OAc)_2$ —4PPh₃ or $Pd(PPh_3)_4$ and a stoichiometric amount of $SnCl_2$ at 40–50 °C in AcOH–H₂O to produce 1-substituted 2,2-dimethyl-3-buten-1-ols regionselectively.

Allylic alcohols and esters can be applied to palladium-catalysed carbonyl allylation with $SnCl_2$, in which the formation of a π -allylpalladium complex followed by that of an allylic tin compound are the key steps.\(^1\) Any substrate, transformed into a π -allylpalladium complex, could be utilized for palladium-catalysed carbonyl allylation with $SnCl_2$. Here we report the transformation of isoprene into a π -allylpalladium complex\(^2\) and its application to carbonyl allylation with $SnCl_2$.\(^3

Using benzaldehyde **2a** and octanal **2b**, we investigated palladium-catalysed carbonyl allylation by isoprene **1** with SnCl₂ under various conditions, as summarized in Table 1 [eqn. (1)]. Using Pd(OAc)₂ as a catalyst and PPh₃ as a ligand at 40 °C for 24 h in H₂O-HOAc under an argon atmosphere, 2,2-dimethyl-1-phenyl-3-buten-1-ol **3a** was regioselectively formed from the allylation of **2a** by **1** (entry 1). No reaction occurred at 25 °C. Prolonged heating lowered the yield of **3a**

Table 1 Palladium-catalysed allylation of 2a and 2b by 1 with SnCl₂a

Entry	Aldehyde	Ligand/mmol	T/°C	t/h	Yield ^b (%)
1	2a	PPh ₃ /0.08	40	24	85
2	2a	PPh ₃ /0.08	40	72	72
3	2a	PPh ₃ /0.08	40	120	43
4	2a	PPh ₃ /0.08	55	72	29
5	2a	PPh ₃ /0.04	40	24	67
6	2b	PPh ₃ /0.08	40	24	23
7	2b	PPh ₃ /0.08	50	24	29
8	2b	PPh ₃ /0.08	80	6	34c
9	2b	`	50	24	$32^{c,d}$
10	2b	PPh ₃ /0.02	50	24	$43^{c,d}$
11	2b	PPh ₃ /0.08	50	24	39d

 $[^]a$ The allylation of benzaldehyde or octanal (1 mmol) by isoprene (5 mmol) was carried out with $Pd(OAc)_2~(0.02~mmol)$ and $SnCl_2~(2~mmol)$ in $H_2O~(1~ml)$ and AcOH (2 ml). b Isolated yields. c The regioisomer, 2-methyl-2-dodecen-5-ol was obtained in 8–10% yields. d $Pd(PPh_3)_4$ was used as a catalyst.

Table 2 Palladium-catalysed allylation of various aldehydes RCHO by 1 with SnCl₂^a

Entry	Aldehyde R	Catalyst	Yield ^b (%)
i	4-NCC ₆ H ₄	Pd(OAc) ₂	61
2	$4-\text{MeO}_2\text{CC}_6\text{H}_4$	Pd(PPh ₃) ₄	82
3	2-BrC ₆ H ₄	Pd(PPh ₃) ₄	57
4	4-ClC ₆ H ₄	Pd(OAc) ₂	58
5	4-MeOC ₆ H ₄	$Pd(OAc)_2$	46^{c}
6	PhCH ₂ CH ₂	$Pd(OAc)_2$	31
7	$n-C_{10}H_{21}$	$Pd(PPh_3)_4$	35d
8	$CH_2=CH(CH_2)_8$	$Pd(PPh_3)_4$	32 ^d
9	c-C ₆ H ₁₁	$Pd(PPh_3)_4$	17 ^d

[&]quot; The allylation of aldehyde (1 mmol) by isoprene (5 mmol) was carried out with Pd catalyst (0.02 mmol), PPh₃ (0.08 mmol), and SnCl₂ (2 mmol) at 40 °C for 24 h in $\rm H_2O$ (1 ml) and AcOH (2 ml). ^b Isolated yields. ^c The reaction was carried out at 80 °C for 2 h. ^d The reaction was carried out with PPh₃ (0.04 mmol) at 50 °C. The regioisomers, 1-substituted 4-methylpent-3-en-1-ols, were obtained in 6-11% yields.

(entries 2-4). The use of ligands such as PBu₃, P(OMe)₃, P(o-tolyl)₃, dppe, and AsPh₃ lowered the yields (45-59%). Neither THF-HOAc nor DMF-HOAc can be used as solvents for the allylation. The allylation of an aliphatic aldehyde, octanal 2b, by 1 did not proceed as smoothly under the same conditions as with 2a (entry 6). Raising the temperature promotes the allylation of 2b, enhancing the yield of 3,3dimethyl-1-undecen-4-ol 3b while lowering the regioselectivity (entry 8). Pd(PPh₃)₄ with extra PPh₃ was a better catalyst than Pd(OAc)₂-4PPh₃ in the allylation of 2b at 50 °C (entries 7 and 9-11). Methanesulfonic acid (2 mmol) (or toluene-psulfonic acid) instead of acetic acid caused the allylation of 2b in THF to give 3b in 24% (12%) yield. Palladium-catalysed allylation of various aldehydes by 1 with SnCl₂ proceeded under the same conditions as with 2a and 2b to give 1-substituted 2,2-dimethyl-3-buten-1-ols. Representative results are summarized in Table 2. Aromatic aldehydes bearing either an electron-withdrawing group or an electrondonating group can be used in the allylation (entries 1-5). Non-bulky aliphatic aldehydes exhibited almost the same reactivity as that of 2b (entries 6-8). Both reactivity and selectivity are low in the allylation of a bulky aldehyde, cyclohexanecarbaldehyde (entry 9).

Since 1-substituted 2,2-dimethyl-3-buten-1-ols have been regioselectively produced in all cases, 3-methyl-2-butenyltin intermediate **D**, derived from isoprene with Pd/SnCl₂/HOAc, probably attacks aldehydes at the γ-position similarly to palladium-catalysed carbonyl allylation by allylic alcohols with SnCl₂, as shown in Scheme 1.¹ The allyltin intermediate **D** is probably formed *via* the formation of isoprene coordinated stannylpalladium hydride **A** followed by (a) insertion of

Scheme 1

monosubstituted olefin to the Pd–Sn bond (the formation of π -allylpalladium hydride **B**)⁴ or (b) insertion of disubstituted olefin to the Pd–H bond (the formation of π -allylpalladium stannate **C**).⁵

Received, 14th March 1994; Com. 4/01513D

References

 J. P. Takahara, Y. Masuyama and Y. Kurusu, J. Am. Chem. Soc., 1992, 114, 2577; Y. Masuyama, Adv. Met.-Org. Chem., 1994, 3, 255.

- 2 J.-E. Bäckvall, Adv. Met.-Org. Chem., 1989, 1, 135.
- 3 For palladium-catalysed telomerization of butadiene with aldehydes, see: K. Ohno, T. Mitsuyasu and J. Tsuji, *Tetrahedron*, 1972, **28**, 3705 and references cited therein.
- 4 For insertion of monosubstituted olefin to Rh-Si bond in rhodium-catalysed hydrosilylation of isoprene, see: I. Ojima and M. Kumagai, *J. Organomet. Chem.*, 1978, **157**, 359.
- 5 For insertion of disubstituted olefin to Pd-H bond in palladium-catalysed hydrosulfonylation of isoprene, see: M. Julia, M. Nel and L. Saussine, J. Organomet. Chem., 1979, 181, C17; M. Julia, M. Nel, A. Righini and D. Uguen, J. Organomet. Chem., 1982, 235, 113.