Amphidinolide N, a Novel 26-Membered Macrolide with Remarkably Potent Cytotoxicity from the Cultured Marine Dinoflagellate *Amphidinium* sp.

Masami Ishibashi, a Naoko Yamaguchi, a Takuma Sasaki b and Jun'ichi Kobayashi*a

^a Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan^b Cancer Research Institute, Kanazawa University, Kanazawa 920, Japan

Amphidinolide N (1), a novel 26-membered macrolide possessing an unprecedented carbon framework, has been isolated as an extremely potent cytotoxic compound from the cultured marine dinoflagellate *Amphidinium* sp., which was living inside of the Okinawan marine flatwork *Amphiscolops* sp., and its structure elucidated by extensive analyses of its spectroscopic data.

Marine dinoflagellates of the genus Amphidinium have proven to be a rich source of unique bioactive secondary metabolites with unprecedented structures.^{1,2} We now succeeded in isolating a novel 26-membered macrolide, amphidinolide N (1), possessing extremely potent cytotoxicity from extracts of the dinoflagellate (strain number Y-5)† with IC₅₀ values against murine lymphoma L1210 and human epidermoid carcinoma KB cells in vitro being 0.00005 and 0.00006 μ g ml⁻¹, respectively. The cytotoxicity of compound 1 is the most potent among amphidinolides previously isolated,³ and almost comparable to those of spongistatins (altohyrtins, or cinachyrolide),4[‡] which were recently isolated from marine sponges and reported to be 'the most potent of all substances tested to date in the NCI screen.'5 Amphidinolide N (1), on the other hand, bears a chemically unique structure with an hitherto unknown carbon framework. Here we describe the isolation and structural elucidation of 1.

The harvested algal cells (878 g, wet weight, from 3240 l of culture) were extracted with MeOH-toluene (3:1) and the extracts were partitioned between toluene and water. The toluene-soluble portion was subjected to a silica gel column (CHCl₃-MeOH, 95:5), and the cytotoxic fractions were subsequently separated by gel filtration on Sephadex LH-20 (CHCl₃-MeOH, 1:1). Further purification by reversed-phase HPLC (ODS, 60% MeCN) afforded amphidinolide N (1, 0.0009% yield, wet weight); colourless amorphous solid: $[\alpha]_D^{20} + 20^\circ$ (*c* 0.5, MeOH); IR (film) v_{max} 3400 and 1710 cm⁻¹; FABMS [matrix, diethanolamine (DEA)] *m/z* 748 (M + DEA + H)⁺ and 730 (M + DEA + H - H₂O)⁺.

The molecular formula of amphidinolide N (1) was revealed as $C_{33}H_{54}O_{12}$ by high-resolution FABMS data [m/z 748.4464 $(M + DEA + H)^+$ for $C_{37}H_{66}O_{14}N$, $\Delta -1.9$ mmu. The chromatographic behaviour of compound 1 suggested that it contains more hydroxyl groups than previously isolated amphidinolides (containing 2–4 OH).§ Interpretation of the ¹H and ¹³C NMR spectral data of 1 (Table 1) indicated the presence of one isolated ketone, one ester carbonyl, one *exo*-methylene, one trisubstituted double-bond, ten oxymethines, two unoxygenated methines, ten sp³ methylenes, and four methyls. A characteristic ¹³C signal was observed at δ_C 98.2, which was assignable to a hemiketal group. Since four out of seven unsaturations were thus accounted for, compound 1 was inferred to contain three rings (*viz.*, one lactone, one epoxide, and one ether ring). Several types of recently developed 2D NMR techniques (${}^{1}H{-}{}^{1}H$ COSY, NOESY, HOHAHA, ${}^{6}HSQC$, 7 and HMBC⁸) were applied using a 600 MHz spectrometer and results are given in Fig. 1. The ${}^{1}H{-}{}^{1}H$ COSY spectrum of 1 clearly showed the proton connectivities for seven partial structural units (**a**-**g**) designated by bold lines.

Units **a** and **b** were connected through an sp² carbon atom (C-6) to which is connected the *exo*-methylene group; this fact was revealed by the HMBC (H-5/C-6, H-5/C-31, H-7/C-6, H-7/C-31, H-31a/C-5, and H-31b/C-7) as well as NOESY correlations (H-4/H-7, H-5/H-7, H-5/H-8a, H-5/H-31b, H-7/H-31a).¶ The isolated ketone (C-9) showed HMBC connectivities with H-8a, H-8b, H-10, and H₃-32, thus placing it between C-8 (**b**) and C-10 (**c**). The hemiketal carbon (C-15) was revealed to be adjacent to C-14 by the HMBC correlation for H-13b/C-15, and was connected to C-16 (**d**) by the NOESY cross-peaks for H-13a/H-16 and H-13b/H-16. These observations were coincident with the fact that the ¹H-¹H COSY spectrum of **1** had suggested that C-14 and C-16 were vicinal to a quaternary carbon.

In the HOHAHA spectrum of 1 H-16 was correlated to H_2 -18 and H-19, while H-19 showed cross-peaks with H_2 -17. Units **d** and **e** were thus shown to be adjoining. A NOESY cross-peak was observed between H-14 and H-19, thus suggesting that the C-19 oxymethine and the C-15 hemiketal

Fig. 1 Partial structural units (a-g) based on the ${}^{1}H^{-1}H$ COSY data and selected HMBC and HOHAHA correlations

Fig. 2 Conceivable relative stereochemistry of the tetrahydropyran portion (C-13–C-19) of 1

were linked through an oxygen to form a tetrahydropyran (THP) ring and H-19 and C-14 were both axially oriented on the THP ring (Fig. 2). The hydroxyl group on C-16 was deduced to be axial on the basis of the coupling constants $(J_{16.17a} = J_{16.17b} = 2.5 \text{ Hz}).$

Connection between units **e** and **f** was substantiated by the HOHAHA correlations observed for H-21/H₂-23, H-21/H-24, H-21/H-25, H₂-22/H-24 and H₂-22/H-25. The C-25 oxymethine proton, resonating at a relatively low field (δ_H 4.84), showed an HMBC correlation with the ester carbonyl carbon (δ_C 173.5, C-1), which in turn showed HMBC connectivities with H-2 and H₃-30. Thus, C-25 (**f**) and C-2 (**a**) were connected through the C-1 carbonyl to construct a 26-membered macrocyclic lactone ring.

The H-25 showed an HMBC cross-peak to an sp³ methylene at $\delta_{\rm C}$ 27.8 (C-27), which was also correlated with the terminal methyl protons (H₃-29) by the HMBC spectrum. A *n*-butyl group was therefore suggested to be attached on the C-25 oxymethine carbon. The ¹³C chemical shifts for C-27 ($\delta_{\rm C}$ 27.7), C-28 ($\delta_{\rm C}$ 22.7), and C-29 ($\delta_{\rm C}$ 14.3) were very similar to those of the corresponding carbons of hexan-2-ol.9

The configuration of the 4,5-epoxide was deduced to be *trans* by the coupling constant ($J_{4,5} = 1.9$ Hz),¹⁰ whereas the ¹³C chemical shift of the C-33 methyl group ($\delta_{\rm C}$ 15.7) implied that the geometry of the $\Delta^{11,12}$ -double bond was *E*, which was supported by the NOESY correlations for H-10/H₃-33 and H-11/H-13b. From all of these results the structure of amphidinolide N was concluded as 1.

A number of macrolides with a variety of new carbon

Table 1 ¹H and ¹³C NMR data of amphidinolide N (1) in $C_6 D_6^a$

Position	δ_{H}	$\delta_{\rm C}$	Position	δ _H	δ _C
1		171.8	18a	1.39 m	25.6
2	2.73 qnt	45.0	18b	1.03 m	
3	3.86 m	73.0	19	4.23 m	65.9
3-OH	4.85 br s		20(2H)	1.44 m	41.5
4	3.13 dd	62.3	21	4.16 m	74.5
5	3.59 d	54.6	21-OH	4.36 br s	
6		147.0	22a	1.66 m	32.6
7	4.82 dd	69.7	22b	1.16 m	
7-OH	3.97 br s		23a	1.20 m	27.9
8a	3.00 dd	45.2	23b	1.57 m	
8b	2.65 dd		24	3.77 q	80.5
9		210.5	25	4.84 m	
10	3.25 dq	47.9	26a	1.40 m	
11	5.16 d	127.5	26b	1.35 m	
12		136.3	27 (2H)	1.34 m	27.7
13a	2.49 br d	40.3	28 (2H)	1.33 m	22.7
13b	2.41 dd		29 (3H)	0.91 t	14.3
14	4.32 dd	70.9	30 (3H)	1.22 d	14.1
14-OH	3.98 br s		31a	5.38 s	111.6
15		98.2	31b	5.30 s	
16	3.62 br t	65.8	32 (3H)	1.13 d	15.8
17a	2.20 m	26.9	33 (3H)	1.79 s	15.7
17b	1.53 m		. /		

^{*a*} J(H/H) in Hz: 2/3 = 7.2, 2/30 = 7.2, 3/4 = 4.6, 4/5 = 1.9, 7/8a = 10.4, 7/8b = 2.3, 8a/8b = 16.9, 10/11 = 9.9, 10/32 = 6.7, 13a/13b = 13.1, 13a/14 = 3.4, 13b/14 = 11.2, 16/17a = 2.5, 16/17b = 2.5, 23a/24 = 7.5, 23b/24 = 7.5, 24/25 = 7.5, 28/29 = 7.1.

skeletons have been isolated from dinoflagellates of the genus *Amphidinium.*³ Amphidinolide N (1) also possesses an unprecedented carbon framework; some structural features are, however, similar to those of previously isolated amphidinoldes^{1,3} (*e.g.* presence of *exo*-methylene and epoxide groups). The most noteworthy-feature is the outstanding cytotoxicity of compound 1, which may be expected to be a new source of antitumour agent.

This work was partly supported by a Grant-in-Aid from the Asahi Glass Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Received, 28th March 1994; Com. 4/01856G

Footnotes

 \dagger This dinoflagellate *Amphidinium* sp. was isolated from the Okinawan marine flatworm *Amphiscolops* sp. Amphidinolides A-E, J, and K were previously isolated from extracts of this species of dinoflagellate.³

[‡] The IC_{50} values of altohyrtin A^{4b}; L1210, 0.0001 µg mL⁻¹; KB, 0.00001 µg ml⁻¹ were determined by T. Sasaki, who also determined the IC_{50} values of 1. Spongistatin A and altohyrtin A possess the same planar structure and probably are identical compounds.

§ Retention times on reversed-phase HPLC analysis [Develosil ODS-5, Nomura Chemical, 10×250 mm, 60% MeCN; flow rate, 2.5 mL min⁻¹, RI (refractive index) and UV (220 nm) detection]: 1, 10.0 min; amphidinolide E (containing 3 OH), 24.9 min; amphidinolide A (containing 4 OH), 27.6 min; amphidinolide J (containing 2 OH), 35.7 min; amphidinolide C (containing 4 OH), 41.6 min.

¶ For the assignment of nonequivalent methylene protons, lower field methylene protons were suffixed by 'a' (*e.g.* H-8a), while higher field ones were suffixed by 'b' (*e.g.* H-8b).

|| The ¹³C chemical shifts for the C-4–C-6 positions of hexan-2-ol occur at δ_C 28.2 (C-4), 23.2 (C-5) and 14.3 (C-6) whereas the ¹³C chemical shifts for the C-4–C-6 positions of hexan-3-ol occur at δ_C 39.4 (C-4), 19.2 (C-5), and 14.3 (C-6)⁹.

References

- 1 J. Kobayashi and M. Ishibashi, Chem. Rev., 1993, 93, 1753.
- 2 M. Satake, M. Murata, T. Yasumoto, T. Fujita and H. Naoki, J. Am. Chem. Soc., 1991, 113, 9859.
- 3 M. Ishibashi, M. Sato and J. Kobayashi, J. Org. Chem., 1993, 58, 6928 and references cited therein.
- 4 (a) G. R. Pettit, Z. A. Cichacz, F. Gao, C. L. Herald, M. R. Boyd, J. M. Schmidt and J. N. A. Hooper, J. Org. Chem., 1993, 58, 1302; (b) M. Kobayashi, S. Aoki, H. Sakai, K. Kawazoe, N. Kihara, T. Sasaki and I. Kitagawa, Tetrahedron Lett., 1993, 34, 2795; (c) N. Fusetani, K. Shinoda and S. Matsunaga, J. Am. Chem. Soc., 1993, 115, 3977.
- 5 G. R. Pettit, C. L. Herald, Z. A. Cichacz, F. Gao, J. M. Schmidt, M. R. Boyd, N. D. Christie and F. E. Boettner, J. Chem. Soc., Chem. Commun., 1993, 1805.
- 6 A. Bax and D. G. Davis, J. Magn. Reson., 1985, 65, 355.
- 7 G. Bodenhausen and D. Ruben, Chem. Phys. Lett., 1980, 69, 185.
- 8 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, **108**, 2093. 9 H.-O. Kalinowski, S. Berger and S. Braun in Carbon-13 NMR
- Spectroscopy, Wiley, Chichester, 1984, p. 177. 10 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Ohizumi, T.
- Yamasu, T. Sasaki and Y. Hirata, *Tetrahedron Lett.*, 1986, **27**, 5755.