Total Synthesis of (-)-Ovalicine from L-Quebrachitol

Sophie Bath, David C. Billington, Stephen D. Gero, Béatrice Quiclet-Sire* and Mohammad Samadi* a

a Institut de Chimie des Substances Naturelles, C.N.R.S., 91198, Gif-sur-Yvette, Cedex, France

b Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France

The first chiral synthesis of (-)-Ovalicine 1 from commercially available ι -Quebrachitol in 16 steps and an overall yield of 3.5% is reported.

(-)-Ovalicine, a secondary metabolite similar in structure to the antitumour antibiotic Fumagillin, was first isolated from cultures of *Pseudorotium Ovalis* by Stolk.¹ The observed antibiotic, antitumour and immunosuppressive activities of (-)-1 led Corey and Dittami to develop a total synthesis of racemic ovalicine from 2,4-dihydroxybenzoic acid.²

Here we describe the first chiral synthesis of (-)-Ovalicine 1, using the naturally occurring optically active L-Quebrachitol as starting material.³ This starting material, isolated from *Hevea brasiliensis*, was chosen as it contains a C-2 methoxy group, and has an absolute stereochemistry amenable for conversion into (-)-Ovalicine 1.

L-Quebrachitol was transformed into L-3,4:5,6-di-Ocyclohexylidene-2-O-methyl-chiro-inositol using the literature method,⁴ which on benzylation with benzyl bromide in DMF gave the fully protected compound **2** (90%). Selective removal of the less stable trans acetal was accomplished by transacetylation using ethylene glycol in dichloromethane in the presence of a catalytic quantity of p-TSA. The resulting diol **3** (70%) was then acetylated (98%), and acid cleavage of the remaining cis acetal gave the crystalline diol **4** (77%) {(mp 133 °C heptane, $[\alpha]_D^{25} = -55$ (c 1.42, CH₂Cl₂)}. In order to effect a Corey–Winter cis-desoxygenation⁵ **4** was

In order to effect a Corey–Winter *cis*-desoxygenation⁵ **4** was first treated with thiophosgene in dichloromethane in the presence of 4-dimethylaminopyridine, and the resulting thiocarbonate was then heated at 120 °C in trimethylphosphite for 24 h. Cleavage of the acetate groups using ammonia in methanol then gave the olefin **5** (82% from **4**). Selective oxidation of the allylic hydroxy group of **5** was achieved using freshly prepared MnO₂ (from MnCl₂ and KMnO₄)⁶ to give the α , β -unsaturated ketone **6** (50%) as an oil { α _D²⁵ = -172 (α 1.2 CHCl₃)}. Catalytic hydrogenation of **6** in ethanol in the presence of palladium gave the dihydroxycyclohexanone (85%) which was selectively benzoylated (94%) at the more reactive *alpha*-hydroxy group, and subsequently silylated to give the fully protected ketone **7** (97%).

To introduce the spirocyclic epoxide function, the ketone 7 was first treated with an excess of methyltriphenylphosphorane to give the exocyclic olefin 8 (70%) $\{[\alpha]_D^{25} = -85 \ (c \ 1.12, CHCl_3)\}$. Epoxidation of the olefin 8 with *meta*-chloroperbenzoic acid gave the *cis* spiro-epoxide 9 as the major product (84%) $\{[\alpha]_D^{25} = -60 \ (c \ 1.27, CHCl_3)\}$ together with 10% of the *trans* isomer 9b, $\{[\alpha]_D^{25} = -22 \ (c \ 0.62, CHCl_3)\}$. Swern oxidation⁷ of 9 then gave the keto-epoxide 10 as an oil (88%) $\{[\alpha]_D^{25} = -87 \ (c \ 1.15, CHCl_3)\}$.

The side chain of (-)-ovalicine was introduced by a Shapiro reaction⁸ between the ketone **10** and the vinyl lithium **11**, prepared *in situ* from 3,3-dimethylallyl bromide and acetone (2,4,6-triisopropylbenzene) sulphonylhydrazone.⁹ The addition product **12** (75%) { $[\alpha]_D^{25} = -75 \ (c \ 1, CHCl_3)$ } was then epoxidised by the method of Sharpless¹⁰ using *tert*-butyl hydroperoxide in the presence of vanadium acetylacetonate to give a mixture of two bis-epoxides (72%), which could only be

separated on silica gel after desilylation. The isomeric bis-epoxides 13 $\{[\alpha]_D^{25} = -83 \ (c \ 0.5, \text{CHCl}_3; \text{lit} -88 \ (c \ 0.45, \text{CHCl}_3)\},^{1b}$ and 14 $\{[\alpha]_D^{25} = -69 \ (c \ 0.75, \text{CHCl}_3)\}$ were isolated in the ratio 65:35. The bis-epoxide 13 was then converted into (–)-ovalicine 1 (78%) $\{[\alpha]_D^{25} = -115 \ (c \ 0.5, \text{CHCl}_3; \text{lit}. -117 \ (c \ 0.4, \text{CHCl}_3)\}^{1\dagger}$ by oxidation of the secondary alcohol to the corresponding ketone using pyridinium-dichromate.

Received, 25th February 1994; Com. 4/01169D

Scheme 1 Reagents and conditions: i, HOCH₂CH₂OH, p-TSA, CH₂Cl₂; ii, (a) (CH₃CO)₂O, Py, (b) CF₃COOH, THF-H₂O; iii, (a) CSCl₂, DMAP, CH₂Cl₂, (b) (CH₃O)₃P; iv, NH₃, MeOH; v, MnO₂, CH₂Cl₂; vi, (a) H₂, Pd/C 10%, EtOH, (b) PhCOCl, Py, (c) (Et)₃SiCl, imidazole, DMF; vii, Ph₃P=CH₂, THF; viii, MCPBA, CH₂Cl₂; ix, DMSO, (CF₃CO)₂O, CH₂Cl₂; x, 11, THF-Toluene -78 °C; xi, (a) (acacO)₂VO, Bu¹OOH, PhH, (b) TBAF, THF; xii, PDC, CH₂Cl₂

1 (-) ovalicine

Footnote

† Selected spectroscopic data for 1: mp 90–92 °C (ether–pentane), lit.¹ 94–95 °C (ether–pentane) ¹H NMR (CDCl₃): 5.18 (t, H-11, $J_{11,10}$ 7.5 Hz); 4.23 (s, 1H, H-2); 3.56 (s, 3H, OMe); 3.18 (br s, 1H, OH); 3.1 (d, 1H, H-7, $J_{7,7'}$ 4.2 Hz); 2.9 (t, 1H, H-9, $J_{9,10}$ 6.5 Hz); 2.73 (d, 1H, H-7'); 2.66–2.46 (m, 3H, H-6, H-6', H-5); 2.43 (m, 1H, H-10, $J_{10,10'}$ 14.5 Hz, $J_{10,11}$ 7.5 Hz, $J_{10,9}$ 6.5 Hz); 2.15 (m, 1H, H-10'); 1.75 (s, 3H, Me-14); 1.66 (s, 3H, Me-13); 1.43 (m, 1H, H-5); (s, 3H, Me-15).

References

(a) H. P. Sigg and H. P. Weber, Helv. Chim. Acta, 1968, 51, 1395;
(b) P. Bollinger, H. P. Sigg and H. P. Weber, Helv. Chim. Acta, 1973, 56, 819.

- 2 E. J. Corey and J. P. Dittami, J. Am. Chem. Soc., 1985, 107, 256.
- 3 N. Chida, K. Yamada and S. Ogawa, J. Chem. Soc., Perkin Trans. 1, 1993, 1957; and references cited therein.
- 4 S. D. Gero, Tetrahedron Lett., 1966, 6, 591.
- 5 E. J. Corey and R. A. E. Winter, J. Am. Chem. Soc., 1963, 85, 2677.
- 6 A. Fatiadi, Synthesis, 1976, 65.
- 7 S. L. Huang, K. O. Omura and D. Swern, Synthesis, 1978, 297.
- 8 R. H. Shapiro, Org. React., 1975, 23, 405; R. H. Adlington and A. G. M. Barett, J. Chem. Soc., Perkin Trans. 1, 1981, 2848; R. H. Adlington and A. G. M. Barett, Acc. Chem. Res., 1983, 16, 55; also see ref. 2.
- 9 N. J. Cusack, C. B. Reese, A. C. Risius and B. Roozpeikar, Tetrahedron, 1976, 32, 2157.
- 10 J. G. Hill, B. E. Rossiter and K. B. Sharpless, *J. Org. Chem.*, 1983, **48**, 3607 and references cited therein.