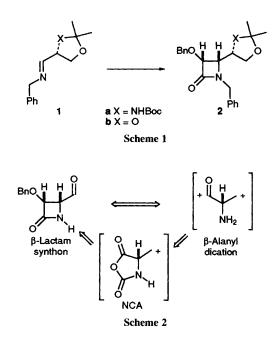
A β -Lactam Framework as a β -Alanyl Dication Equivalent: New Synthesis of α -Amino Acid *N*-carboxy Anhydrides (NCAs) Derived from β -Substituted Alanines

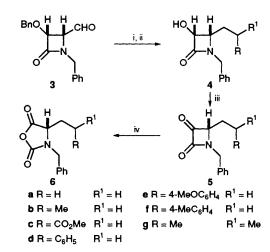

Claudio Palomo,* Jesus M. Aizpurua, Iñaki Ganboa, Elena Maneiro and Beatriz Odriozola

Departamento de Química Orgánica, Facultad de Química, Universidad del Pais Vasco, Apdo 1072, 20080 San Sebastián, Spain

Optically pure 4-formyl-3-hydroxy β -lactams are transformed into 4-methylaryl and 4-(2-ethylaryl) derivatives and converted into β -substituted alanine-derived NCAs through oxidation and Baeyer–Villiger rearrangement of the resulting α -keto β -lactams.

α-Amino acid N-carboxy anhydrides (NCAs) or Leuchs¹ anhydrides are of particular relevance as synthetic tools in the chemistry of α -amino acids, because they offer amino group protection and carboxylate activation simultaneously.² Recently, we undertook a study on a new synthesis of this particular class of mixed anhydrides, and found that oxidation of a 3-hydroxy β -lactam, followed by Baeyer–Villiger rearrangement of the resulting azetidine-2,3-dione, constituted an efficient alternative to the usual Leuchs procedure.^{3†} The successful implementation of the approach was, however, based on the availability of the requisite starting α -hydroxy β lactams via cycloaddition reaction of alkoxyketenes to either α -alkoxyimines or N-Boc- α -aminoimines,⁴ Scheme 1. We report here our initial findings on the development of this approach into a general synthesis of β -substituted alaninederived NCAs, whose significance as valuable precursors of dipeptide units, like those involved in macrocyclic compounds, could easily be anticipated.⁵ The key to our approach is the use of an optically active 3-alkoxy-4-formyl β -lactam as a 1,3-alanyl dication equivalent, allowing either β -alkylation (or arylation) and carbonyl functionalization by suitable nucleophiles, Scheme 2.

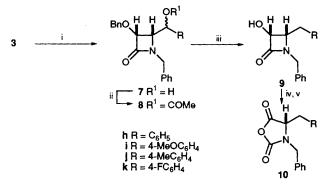
Two examples were chosen to illustrate these concepts. First, the 4-formyl- β -lactam 3,‡ obtained from 2a as previously described,⁶ was subjected to Wittig reaction, followed by hydrogenolysis under Pd/C of the resulting olefinic intermediates.§ As shown in Table 1, the resulting 4-alkyl-3-hydroxy β -lactams 4a-g were obtained in excellent overall yields.⁷ With the exception of 4g,¶ no 1-4 β -lactam bond cleavage was observed.⁸ For the oxidation of compounds 5 various reagents were tested, and the best results, in terms of chemical yield and large scale suitability, were obtained using dimethyl sulfoxide (DMSO), in combination with phosphorus

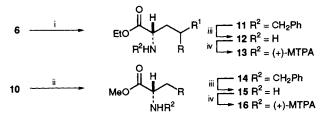

pentoxide.⁹ The α -keto β -lactams thus prepared were then allowed to react with MCPBA which had been previously dried over MgSO₄ in methylene chloride as solvent. The reaction temperature was found to be critical for the success of the transformation, the optimum results being recorded at -40 °C. Under these conditions, the reaction proceeded cleanly to give the desired homoarylalanine- and alkylglycinederived NCAs 6 in almost quantitative yields. Nonetheless, at times some of the NCAs showed traces of MCPBA as the only by-product, but none of them showed loss of optical purity as judged by the amino acids formed, *vide infra*.

A further example confirming the versatility of 3 as a 1,3alanyl dication equivalent is the formation of arylalaninederived NCAs. The reaction of 3 with Grignard reagents (Scheme 4) was selected for development owing to the ample

Table 1 α-Hydroxy-3-alkyl β-lactams prepared^a

С	ompound	Yield ^b (%)	Mp/°C ^c	$[\alpha]_{D}^{25}(c 1, CH_{2}Cl_{2})$
4:	1	86	86-87 ^d	+59.6
4)	75	69-71 ^d	+46.1
40	2	74	48-50 ^d	+46.4
4	1	91	100–101 ^e	+56.8
40	•	80	140 ^f	+54.4
41	,	75	133–134 ^d	+75.1
4	z	70	8	+42.3
9		90	91–93 ^f	+13.3
9i		79	9092f	+27.0
9		71	95–96 ^f	+23.3
9	κ.	75	8486 ^f	+20.4


^{*a*} Reactions conducted on a 10 mmol scale. ^{*b*} Yields of isolated pure products, after column chromatography or crystallization, for $3 \rightarrow 4$ and $7 \rightarrow 9$ overall transformations, respectively. ^{*c*} Crystallization solvents: ^{*d*} EtOAc-hexanes, ^{*e*} hexanes, ^{*f*} CH₂Cl₂-hexanes, ^{*g*} Isolated as an oil.


Scheme 3 Reagents and conditions: i, Ph₃P=CR¹R, THF, room temp., 2 h; ii, HCO₂NH₄, Pd/C, MeOH, reflux, 2 h; iii, P₂O₅, DMSO, CH₂Cl₂, room temp., 20 h; iv, MCPBA, CH₂Cl₂, -40 °C, 30 min

1506

precedents for deoxygenation of hydroxy derivatives.¹⁰ Thus, treatment of 3 with arylmagnesium bromides at -40 °C in THF as solvent, produced the expected carbinols 7h-k in 72-88% yields.** Simultaneous deoxygenation and debenzylation of alcohols 7 through their acetates 8 with HCO₂NH₄ and Pd/C in refluxing propan-2-ol gave the expected 4-arylmethyl-3-hydroxy β -lactams 9 in fairly good yields (Table 1). Finally, oxidation of each lactam 9 was followed by Baeyer-Villiger rearrangement of the resulting α -keto β -lactam, as above. By this means, NCAs 10h-k, formally derived from arylalanines, were obtained in good overall yields. In every case (Scheme 3) the optical purity of the NCAs prepared was determined by their conversion into the α -amino esters 11 and 14, followed by N-debenzylation and further treatment of the resulting free amino compounds 12 and 15 with Mosher¹¹ acid chloride and triethylamine. All of the resulting amide derivatives 13 and 16 showed a single set of signals in the ¹H, ¹³C and ¹⁹F NMR spectra, thus proving that the synthesis and reactions

Scheme 4 Reagents and conditions: i, RMgBr, THF, -40 °C, 30 min; ii, MeCOCl, NEt₃, CH₂Cl₂, room temp., 2 h; iii, NH₄HCO₂, Pd/C, PriOH, reflux, 1 h; iv, P₂O₅, DMSO, CH₂Cl₂, room temp., 20 h; v, MCPBA, CH₂Cl₂, -40 °C, 30 min

Scheme 5 Reagents and conditions: i, EtOH, reflux, 1 h, ii, MeOH, reflux, 1 h; iii, NH₄HCO₂, Pd/C, MeOH, reflux; iv, (+)-MTPA-Cl, NEt₃, CH₂Cl₂, room temp. [MTPA = α -methoxy- α -(trifluoromethyl)phenylacetyl]

Table 2 Synthesis of arylalanine, homoarylalanine and alkylglycine derivatives through α -amino acid-N-carboxyanhydrides 6 and 10^{α}

Compound	Yield ^a (%)	$[\alpha]_{\rm D}^{25}(c1)^{b}$
 11b	81	-14.5(EtOH)
12b	85	+28.0(EtOH)
11d	75	-6.2(MeOH)
12d	90	+9.0(EtOH)
11e	90	-5.6(MeOH)
12e	90	+19.9(EtOH)
11f	76	-12.0(EtOH)
12f	85	+23.5(EtOH)
14i	89	$-6.0(CH_2Cl_2)$
15i	83	$+5.4(CH_2Cl_2)$

^{*a*} Yields of isolated pure products for $(\alpha$ -oxo- β -lactam) $\rightarrow (\alpha$ -*N*-benzylamino ester) **11**, **14** and $(\alpha$ -*N*-benzylamino ester) $\rightarrow (\alpha$ -amino ester) **12**, **15** overall transformations. ^{*b*} All compounds isolated as oils, after preparative HPLC purification.

J. CHEM. SOC., CHEM. COMMUN., 1994

proceeded without detectable racemization. Some representative data are listed in Table 2 to illustrate that a 4-formyl-3alkoxy β -lactam can indeed be regarded as a masked chiral 1,3-alanyl dication equivalent. In particular, formation of NCAs from non- α -amino acid precursors is the most essential feature of this approach when compared with the traditional Leuchs procedure and with the existing electrophilic β -alanyl equivalents.¹² Further work on the use of this chemistry for a stepwise peptide synthesis is currently under way.

The present work has been supported by Comisión Interministerial de Ciencia y Tecnología (Project FAR: 91/0550) and by Gipuzkoa-Donostia KUTXA Foundation. A Grant from Ministerio de Educación y Ciencia to B. O. is gratefully acknowledged.

Received, 22nd February 1994; Com. 4/01078G

Footnotes

[†] During the course of this investigation a Smithkline Beecham group reported that ozonolysis of ethylidene azetidinones can give NCAs instead of α-keto β-lactams.^{3c,d}

[‡] Compound **3** could also be prepared using the corresponding Dglyceraldehyde-derived imine **1b** followed by chemical elaboration of the side chain at C(4): see D. R. Wagle, G. Garai, J. Chiang, M. G. Monteleone, A. E. Kurys, T. W. Strohmeyer, U. R. Hedge, M. S. Manhas and A. K. Bose, *J. Org. Chem.*, 1988, **53**, 4227. The enantiomer of **3** could also be obtained from the corresponding (*S*)-Boc-serinalacetonide-derived imine or by Hubschwerlen's method, see: C. Hubschwerlen and G. Schmid, *Helv. Chim. Acta*, 1983, **66**, 2206.

§ These compounds were usually formed as mixtures of *cis* and *trans* isomers around the double bond, which were not separated. The ylides were generated by using a deficiency of BuⁿLi to ensure complete absence of base in the subsequent step; otherwise, in some cases we observed partial racemization at C(4) of the β -lactam ring. ¶ 4g could be obtained in two steps by reducing the alkene double bond using H₂ at 100 psi (1 psi = 6894.76 Pa) under Pd/C catalysis before the hydrogenolytic debenzylation at C(3) by means of HCO₂NH₄ and Pd/C in refluxing MeOH. Direct treatment of 3g under ammonium formate conditions produced N–C(4) bond cleavage leading to the corresponding α -hydroxy carboxylic acid derivative as major product.

|| We first examined the corresponding 4-methanesulfonyloxymethyl β -lactam, prepared by reduction of 3 and subsequent mesylation, as a 1,3-alanyl dication equivalent. However, reaction of this compound with organocuprates under different reaction conditions did not lead to the expected products. In a similar way, the corresponding triffate and iodomethyl derivatives were also found to be ineffective for this transformation. For a related problem, see: G. I. Georg and T. Durst, J. Org. Chem., 1983, **48**, 2092.

** The diastereoisomeric mixtures of carbinols were acetylated with MeCOCl and Et_3N in dichloromethane, and the resulting acetates were used without separation in these reactions.

References

- H. Lcuchs, Ber. Dtsch. Chem. Ges., 1906, 39, 857; H. Leuchs and W. Manasse, Ber. Dtsch. Chem. Ges., 1907, 40, 3235.
- H. R. Kricheldorf, α-Amino Acid N-Carboxy-Anhydride and Related Heterocycles, Springer-Verlag, Berlin, 1987; T. J. Blacklock, R. Hirschmann and D. F. Veber, *The Peptides*, Academic Press, New York, 1987, vol. 9, p. 39.
 (a) F. P. Cossio, C. Lopez, M. Oiarbide, C. Palomo, D. Aparicio
- (a) F. P. Cossio, C. Lopez, M. Oiarbide, C. Palomo, D. Aparicio and G. Rubiales, *Tetrahedron Lett.*, 1988, 29, 3133; (b) C. Palomo, J. M. Aizpurua, I. Ganboa, F. Carreaux, C. Cuevas, E. Maneiro and J. M. Ontoria, J. Org. Chem., in the press; (c) J. H. Bateson, A. C. Kauara and R. Southgate, *Tetrahedron Lett.*, 1991, 32, 2065; (d) J. H. Bateson, S. C. M. Fell, A. C. Kauara and R. Southgate, J. Chem. Soc., Perkin Trans. 1, 1992, 1577.
- Southgate, J. Chem. Soc., Perkin Trans. I, 1992, 1577.
 For a review, see: G. I. Georg and V. T. Ravikumar, in The Chemistry of β-Lactams, ed. G. I. Georg, VCH, New York, 1992, p. 295.
- 5 For reviews, see: R. M. Williams, Synthesis of Optically Active

J. CHEM. SOC., CHEM. COMMUN., 1994

- 6 C. Palomo, F. P. Cossio, C. Cuevas, B. Lecea, A. Mielgo, P. Roman, A. Luque and M. Martinez-Ripoll, J. Am. Chem. Soc., 1992, 114, 9360.
- 7 While our work was in progress a paper dealing with the synthesis of 4-alkyl-3-hydroxy β -lactams as masked forms of β -amino α -hydroxy acids has appeared, see: R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi and F. Ponzini, *J. Org. Chem.*, 1993, **58**, 4746.
- 8 For problems associated with this transformation, see: A. K. Bose, B. K. Banik, K. J. Barakat and M. S. Manhas, *Synlett*, 1993, 575.
- 9 K. Onodora, S. Hirano and N. Kashimura, J. Am. Chem. Soc., 1965, 87, 4651; D. F. Taber, J. C. Jr. Amedio and K.-Y. Jung, J. Org. Chem. 1987, 52, 5621.
- 10 D. H. R. Barton and W. B. Motherwell, Pure Appl. Chem., 1981, 53, 115; W. Hartwiz, Tetrahedron, 1983, 39, 2609.
- 11 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.
- 12 G. M. Coppola and H. F. Shuster, Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids, Wiley, New York, 1987. See also: R. F. W. Jackson, N. Wishart, A. Wood, K. James and M. J. Wythes, J. Org. Chem., 1992, 57, 3397, and references therein.