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The Crystal Structure of 2-Methoxy-1,4-benzoquinone: Molecular Recognition involving
Intermolecular Dipole-Dipole- and C-H:--O Hydrogen Bond Interactions

Erik M. D. Keegstra,2 Anthony L. Spek,? Jan W. Zwikker= and Leonardus W. Jenneskens* 2
a Debye Institute, Department of Physical Organic chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht,

The Netherlands

b Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 35684 CH Utrecht, The Netherlands

In its crystal structure 2-methoxy-1,4-benzoquinone 2 is networked into a planar hexagonal pattern by intermolecular
dipole—dipole- and extensive C—H--:O hydrogen bond interactions leading to a graphite-like layer packing motif.

Strong (O-H:--O and N—H---O hydrogen bonds)!-2 and weak
(van der Waals, n---m stacking)? intermolecular interactions
are principal forces for molecular recognition and self-organi-
zation of molecules. However, the potential of weak C-H:--Y
(Y=0, N) hydrogen bonds has been recognized and implicated
only recently in the self organization of molecular complexes
and aggregates.4

Here, we report the crystal structure of 2-methoxy-1,4-
benzoquinone 2,7 which possesses a graphite-like layer
packing motif hitherto unknown for simple 1,4-benzoqui-
nones;> both intermolecular dipole-dipole- and C-H---O
hydrogen bond interactions play a decisive role.

The crystal structure of 2 has the space group symmetry
P2,/c with four pairs of two crystallographically independent
molecules of 2 [residue 1 (r = 1) and 2 (n = 2)] occupying the
unit cell. In Fig. 1, an ORTEP representation of both
residues is shown in combination with experimental and
theoretical (MNDO7 [MOPAC 6.0];8 AHO 2 —72.81 kcal
mol-1)§ bond lengths. The data reveal that the planar

Fig. 1 ORTEP (50% probability level) representation of the two
independent molecules of 2; residues 1 and 2 are related by a
non-crystallographic inversion centre. Residues 1 and 2 are stacked in
the c-direction. Bond lengths in A for 2 (n = 1, n = 2) and MNDO
values in square brackets) and MNDO total atomic charges in g:
On1)C(nl): 1.219(4), 1.217(4) [1.223], C(n1)C(n6); 1.467(4),
1.467(4) [1.502], C(n5)C(n6); 1.327(5), 1.323(5) [1.348], C(n4)C(n5);
1.468(6), 1.481(5) [1.498], O(n3)C(n4); 1.228(5), 1.219(5) [1.228],
C(n3)C(nd): 1.451(5), 1.454(4) [1.490], C(n2)C(n3); 1.341(5),
1.331(5) [1.367], C(n1)C(n2); 1.494(5), 1.514(5) [1.527], O(n2)C(n2);
1.336(4), 1.338(4) [1.350], O(n2)C(n7); 1.444(5), 1.447(5) [1.405] and
O(nl); —0.2330, C(n1); 0.2804, C(n2); 0.1164, C(n3); —0.2248,
C(nd); 0.2891, O(n3); —0.2759, C(n5); —0.0772, C(n6); —0.1011,
O(n2); —0.2617, C(n7); 0.2081.

1,4-benzoquinone skeleton of 2 possesses a merocyanine-type
distortion, i.e. bond equalization along the 6m-electron/5
centre subunit perimeter [O(n3)C(n4)C(n3)C(n2)0(2)][n =1
and 2, respectively] is discernible. Note that the MNDO bond
lengths agree satisfactorily with related, averaged bond
lengths found in residues 1 and 2. In line with similar structural
distortions found in 2,5-electron donor-substituted 1,4-benzo-
quinones,3-? the carbon—carbon bond lengths adjacent to
carbonyl group C(n1)O(nl) [n = 1 and 2, respectively] differ
in length by 0.027(1) A (n = 1) and 0.047(1) A (n = 2)
(MNDO 0.025 A). The elongation of carbon—carbon bond
C(n1)C(n2) with respect to C(n1)C(n6) can be rationalized by
the asymmetric charge distribution in 2; the positive total
atomic charges [g(MNDO)] found for carbon atoms C(rnl)
and C(n2) will lead to a reduction of electron density along
C(n1)C(n2) [Fig. 1, g(MNDO), C(nl) 0.2804, C(n2) 0.1164
and C(n6) —0.1011].10 Using similar arguments, the differ-
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Fig. 2 Sheet structure of 2 parallel to ab-plane (a) and its stacking
pattern in the c-direction (b) [C-H---O hydrogen bonds are represen-
ted by ---- (linear) and --- (bifurcated)]#
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ence between the carbon—carbon bond lengths adjacent to
carbonyl group C(n4)O(n3) [n = 1 and 2, respectivel}g will be
less pronounced {Fig. 1;0.017(1) A (n = 1), 0.027(1) A (n =2)
and MNDO 0.008 A [q(MNDO); C(n4) 0.2891, C(n3)
—0.2248 and C(n5) —0.0722]}. Consequently, compound 2
possesses a dipole moment [u(MNDO)=0.81 D§] which will
affect its solid-state packing motif (see below).{

The crystal structure of 2 consists of planar sheets parallel to
the ab-plane with all atoms, except for two of the methyl
hydrogen atoms, positioned within standard deviation in the
best plane [Fig. 2(a)]. The two crystallograpically distinct
molecules of 2 crystallise in alternating infinite ribbons of
residues 1 and 2 which are related by a non-crystallographic
glide-plane. Alternatively, the crystal structure of 2 can also
be envisaged to consist of ‘dimers’ of one residue 1 and one
residue 2 in the c-direction which are related by a non-crys-
tallographic inversion centre (Fig. 1; centre-to-centre distance
3.64 A, angle between the centre-to-centre vector and the
normals of both residues 23.7°). Apparently in this way,
unfavourable intermolecular dipole-dipole interactions both
in the ab-plane and in the c-direction are minimized. Since the
angle between the normal of the best plane of residue 1 and 2,
respectively, in the c-direction is only 0.19(9)°, the sheets run
parallel with an intersheet distance of 3.3 A. Hence, they pack
efficiently for optimal x---7 interactions in a ring over bond
motif (Fig. 1 and 2).Z Remarkably, the occurrence of
extensive C-H:--O hydrogen bond formation in the sheets is
implicated by the observed intermolecular H---O distances
and their directionality. According to common hydrogen bond
classification criteria,!! they can be designated as either linear
or bifurcated with the carbonyl- or methoxy-oxygen atoms of
other molecules 2 acting as acceptor [Fig. 2(a)]. With the
exception of two H---O distances of 2.63 and 2.61 A which fall
in the range of the sum of van der Waals radii minus 0.05 A, all
H---O distances are smaller than the sum of van der Waals
radii minus 0.12 A (H---O; range 2.38-2.59 A)! Within and
among the ribbons the hydrogen atoms of the 1,4-benzoqui-
none skeleton form linear C—-H---O hydrogen bonds with
carbonyl groups. Relevant C-H---O angles are in the range of
157-176° and do not deviate much from linearity [Fig. 2(a)].!!
Furthermore, bifurcated C-H---O hydrogen bonds are identi-
fied between the in-plane hydrogen atom of the methyl group
of residues 1 and 2 with both the carbonyl and methoxy oxygen
atom of residues located in the next nearest ribbon. For these
weak hydrogen bonds, the sum of valence angles about
hydrogen is 344° [residue 1] and 351° [residue 2], respectively,
which is in satisfactory agreement with the anticipated value of
360°.11 In addition, a distorted linear weak C~H---O hydrogen
bond with H---O 2.47 A and a C-H--O angle of 131° is
identified between an out-of-plane hydrogen atom of the
methyl group of residue 2 and the ether oxygen atom O(22) of
a similar residue positioned in the next sheet [Fig. 2(b)].
Consequently, the overall effect is that molecules of 2 are
efficiently linked by an intricate interplay of merocyanine-
type and weak C-H---O hydrogen bond interactions into
planar hexagonal networks which stack in the c-direction
leading to a structural motif reminiscent of graphite (2;
packing coefficient 73.3%12 with D, 1.448 Mg m~3).>
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Footnotes

1 Compound 2 was synthesized from 2-methoxyphenol 1 by oxidation
with Fremy’s salt [(KSO3),NO"].¢ Yield 75% , mp 134 °C (decomp.).
Satisfactory analytical data (*H-, 13C NMR, IR and MS) were
obtained. Recrystallization of 2 from THF (0.1 g ml—!) gave suitable
single crystals.

¥ Crystal data for 2: C;HgO3, M = 138.12, orange~yellow crystal (0.12
X 0.25 X 0.25 mm), monoclinic, P2,/c, a = 6.6497(7), b = 14.7216(7),
c=12.9417(12) A, B = 90.81(1)°, Z = 8, D = 1.448 Mg m—3, F(000)
=576, u(Mo-Ka) = 1.1 cm~—1, 6555 reflections (8 < 27.5, w/20scan, T
= 150 K) were measured on an Enraf-Nonius CAD4T/rotating anode
diffractometer using graphite-monochromated Mo-K« radiation (A =
0.71073 A). Data were corrected for Lp. The structure was solved by
direct methods (SHELXS-86) and refined on F2 by full-matrix least
squares analysis (SHELXL-93) to R = 0.064, wR, = 0.137, § = 0.93;
nonhydrogen atoms with anisotropic and hydrogen atoms with
isotropic displacement parameters (|Ap| < 0.29 e A-3). Atomic
coordinates, bond lengths and angles, and thermal parameters have
been deposited at the Cambridge Crystallographic Data Centre, See
Information for Authors, Issue No. 1.

§ 1cal = 4.184 J and 1 D (Debye) = 3.33564 x 10-39 C m. MNDO’
calculations; keywords PRECISE (geometry) followed by a Hessian
calculation (keywords; FORCE and LARGE).®

9 According to MNDO, 2 can be represented by a ‘molecules-in-
molecule’ approach,!0 viz. 2 consists of the two coupled subunits
acroleine {3; AH?(3) —17.93 kcal mol—1,§ [O(n1)C(n1)C(n6)C(n5)]}
and 3-methoxyacroleine {4; AH®(4) —61.53 kcal mol-1,§
[O(n3)C(n4)C(n3)C(n2)O(n2)C(n7)]}. Bond lengths in A and total
atomic charges in g; 3, O(n1)C(n1) 1.223, C(n1)C(n6) 1.488 and
C(nS)C(n6) 1.342 and O(nl) —0.2926, C(n1) 0.2900, C(n5) 0.0070
and C(n6) —0.1824; 4, O(n3)C(nd) 1.224, C(n3)C(n4) 1.480,
C(n2)C(n3) 1.360, O(n2)C(n2) 1.350 and O(n2)C(n7) 1.404, and
O(n3) —0.3051, C(n2) 0.1890, C(n3) —0.2954, C(n4) 0.3077, O(n2)
—0.2873 and C(n7) 0.2083. Note that for 3 and 4 the numbering of 2
has been used (Fig. 1).
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