A Diels–Alder Adduct of C₆₀ containing Hydroxyquinone Functionalities

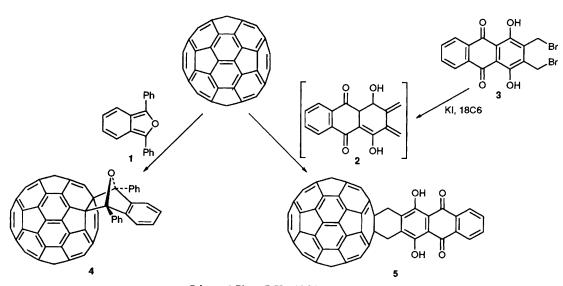
Wolfgang Bidell, Richard E. Douthwaite, Malcolm L. H. Green,* Adam H. H. Stephens and John F. C. Turner Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR

Two new Diels–Alder adducts of C_{60} have been prepared from 1,3-diphenylisobenzofuran and the *ortho*-quinodimethane generated from 1,4-dihydroxy-2,3-bis(bromomethyl)anthraquinone: the dihydroxy anthraquinone– C_{60} adduct readily undergoes deprotonation to give the corresponding dianion.

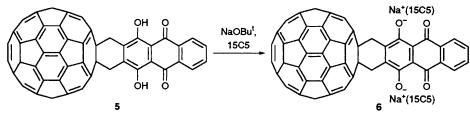
The electron withdrawing nature of the closed cage alkene C_{60} makes it an excellent dienophile for Diels–Alder [4 + 2] cycloaddition.¹ The [4 + 2] cycloaddition involves exclusive addition to the 6–6 bonds.^{1–4} However, many Diels–Alder C_{60} -adducts are unstable and undergo retro reactions.^{2–4} Thermally stable adducts are formed using *iso*-benzofurans³ or *ortho*-quinodimethanes⁴ as a consequence of the aromatization in the C_{60} cycloaddition product. We have used this strategy to prepare C_{60} compounds containing functional groups, as described below.

The compounds 1,3-diphenylisobenzofuran 1 and the *ortho*quinodimethane 2 generated *in situ* from 1,4-dihydroxy-2,3bis(bromomethyl)anthraquinone 3 have been reacted with C_{60} .

 C_{60} . Thus the synthesis of the brown C_{60} -1,3-diphenylisobenzofuran adduct 4 was achieved by mixing together equimolar solutions of C_{60} and 1 in benzene at room temperature. The resulting red solution with a blue fluorescence was stirred overnight. The solution was concentrated and 4 precipitated on addition of pentane.† The ¹H NMR of 4 was similar to the starting diene 1 except that the peaks have shifted *ca*. 0.2 ppm downfield. The ¹³C NMR spectrum is consistent with a C_s symmetry for the molecule. Hence, there are 31 bands in the fullerene region and seven signals between 132 and 121 ppm assignable to the benzoisofuran side chain. Two peaks at 96 and 82 ppm may be assigned to the sp³ carbons of the furan and C_{60} moieties of the adduct, respectively. 4 was soluble in aromatic solvents but only sparingly soluble in polar solvents.


The iodide induced 1,4-elimination at 1,4-dihydroxy-2,3bis(bromomethyl)anthraquinone **3** gives *in situ* formation of the *ortho*-quinodimethane **2**.^{5,6} Compound **5** was prepared by adding dropwise a saturated red toluene solution of 1.1 equiv. of **3** to a refluxing purple toluene solution of C₆₀, 18-crown-6 (10 equiv.) and potassium iodide (2.2 equiv.). The resulting brown reaction mixture was refluxed for 8 h. The product was precipitated with an acetone-water mixture (20:1), washed three times with acetone, twice with pentane and dried in vacuum giving pure 5 in 83% yield. Spectroscopic data showed no evidence for the formation of a diadduct. The solubility of 5 is comparable to C_{60} , and no decomposition in air was observed until 300 °C. The ¹³C NMR spectra of 5 showed 25 lines consistent with the $C_{2\nu}$ symmetry for the molecule, thus there are 17 lines for the C_{60} moiety and 8 lines for the functionalized anthraquinone ligand. At 25 °C the 1H NMR spectrum of 5 showed a broad singlet at 4.68 ppm due to the methylene protons (H_a, H_e) , multiplets at 8.16 and 7.46 ppm due to the aromatic protons and a singlet at 13.42 ppm due to the two hydroxy protons. The broad singlet for the methylene protons H_a, H_e suggested a low conformational inversion barrier on the NMR time scale. Variable temperature experiments showed two signals for H_a and H_e coalesce at ca. 6 °C and on cooling to -40 °C they resolved into two doublets at 4.98 and 4.02 ppm with a geminal coupling constant of 14.5 Hz.

Treatment of **5** with 2 equiv. of sodium *tert*-butoxide in the presence of 15-crown-5 gave the dark blue salt **6**.§ The compound **6** is slightly soluble in THF, very sparingly soluble in acetonitrile and insoluble in aromatic solvents. The low solubility of **6** in THF at room temperature prevented an acceptable ¹H NMR from being obtained. However, at 50 °C the methylene protons appeared at 5.20 and 4.88 ppm which indicates that the conformational inversion does not occur below this temperature.


The UV–VIS spectra of 4, 5 and 6 all exhibit typical peaks assignable to the fullerene moiety at ca. 220, 255, and 330 nm. In addition there is a broad band at 450–600 nm exhibiting different fine structures for each of the adducts.

We are currently exploring the polymer and coordination chemistry of 4, 5 and 6.

We thank the Swiss Nationalfonds and the Royal Society for supporting Dr W. Bidell, the Imperial Chemical Industry for a scholarship to J. F. C. Turner and we also wish to thank the

Scheme 1 Ph = C_6H_5 , 18C6 = 18-crown-6

Scheme 2 15C5 = 15-crown-5

SERC for studentships to R. E. Douthwaite and A. H. H. Stephens.

Received, 5th April 1994; Com. 4/02295E

Footnotes

† Selected analytical and spectroscopic data for 4: Analysis calcd. for $C_{80}H_{14}O$. $3(C_6H_6)$: C, 96.0; H, 2.6. Found: C, 95.6; H, 2.3. IR/cm^{-1} (Nujol) 1093 (m); 1016 (m), 951 (w), 877 (m), 808 (m), 739 (s), 702 (s), 575 (w), 528 (s). ¹H NMR (300 MHz, CD₂Cl₂, 25 °C) δ 8.36, 7.91, 7.66, 7.55 (m, ArH). ¹³C NMR [125 MHz, CS₂ + (CD₃)₂CO (internal), 25 °C] δ 154–136 (s, 31 C₆₀ signals), 132–121 (s, 7 benzoisofuran side chain signals); 96 (s, *COC*); 82 (s, sp³ carbons C₆₀). UV–VIS (C₆H₆) 270, 334, 409, 435(sh), 538, 595, 698 nm.

¶ Selected analytical and spectroscopic data for 5: Analysis calcd. for $C_{76}H_{10}O_4$: C, 92.5; H, 1.0. Found: C, 92.15; H, 1.0. IR/cm⁻¹ (Nujol) 3450 (vw); 1622 (m); 1585 (m); 1417 (s); 1339 (s); 1311 (m); 1266 (vs); 1183 (w); 810 (w); 775 (m); 732 (m); 723 (m); 578 (vw); 528 (s). ¹H NMR (300 MHz, CS₂ + C₆D₅CD₃, 25 °C) δ 13.42 (s, 2H, OH); 8.16, 7.46 (m, 4H, ArH, AA'BB' system); 4.68 (s, br, 4H, CH₂). ¹³C NMR [75.42 MHz, CS₂ + D₂O (external), 25 °C] δ 186 (s, CO); 155–110 (s, 16 C₆₀ and 6 arene side chain signals); 65 (s, sp³ carbons C₆₀); 37 (s, CH₂). UV–VIS (CH₂Cl₂): 229, 257, 328, 407, 437 (sh), 473, 489, 523 (sh) nm.

§ Selected analytical and spectroscopic data for 6: Analysis calcd. for $C_{96}H_{48}O_{14}Na_2$: C, 78.4; H, 3.3; Na, 3.1. Found: C, 80.6; H, 2.6; Na, 2.3. IR/cm⁻¹ (Nujol) 1628 (vw), 1602 (w), 1580 (s), 1351 (s), 1299 (m), 1247 (m), 1119 (s), 950 (m), 860 (vw), 769 (w), 738 (m), 676 (vw), 578 (vw), 528 (s). ¹H NMR (300 MHz, THF-D₈, 50 °C) δ 8.39, 7.62 (m, 4H, ArH, AA'BB' system); 5.20 (s, br, 2H, CH₂); 4.88 (s, br, 2H,

CH₂); 3.64 (s, 20H, OCH₂). UV-VIS (THF, nm): 257, 288 (sh), 327, 404, 435, 489, 525, 573, 616.

References

- Recent Reviews see: Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, ed. G. S. Hammond and V. J. Kuck, ACS Symposium Series 481, ACS, Washington, DC, 1992; H. Schwarz, Angew. Chem., Int. Ed. Engl., 1992, 31, 293; G. A. Olah, I. Busci, R. Aniszfeld and G. K. S. Prakash, Carbon, 1992, 30, 1203; F. Wudl, Acc. Chem. Res., 1992, 25, 157; A. Hirsch, Angew. Chem., 1993, 105, 1189; R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685.
- Y.-Z. An, J. L. Anderson and Y. Rubin, J. Org. Chem., 1993, 58, 4799;
 Y. Rubin, S. Khan, D. I. Freedberg and C. Yeretzian, J. Am. Chem. Soc., 1993, 115, 344;
 S. I. Khan, A. M. Oliver, M. N. Paddon-Row and Y. Rubin, J. Am. Chem. Soc., 1993, 115, 4919;
 M. F. Meidine, R. Roers, G. J. Langley, A. G. Avent, A. D. Darwisch, S. Firth, H. W. Kroto, R. Taylor and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1993, 1342;
 M. Tsuda, T. Ishida, T. Nogami, S. Kurono and M. Ohashi, J. Chem. Soc., Chem. Commun., 1993, 1296.
- 3 M. Prato, T. Suzuki, H. Foroudian, Q. Li, K. Khemani, F. Wudl, J. Leonetti, R. D. Little, T. White, B. Rickborn, S. Yamago and E. Nakamura, J. Am. Chem. Soc., 1993, 115, 1594.
- 4 P. Belik, A. Gügel, J. Spickermann and K. Müllen, Angew. Chem., Int. Ed. Engl., 1993, 32, 78; A. Gügel, A. Kraus, J. Spickermann, P. Belik and K. Müllen, Angew, Chem., Int. Ed. Engl., 1994, 33, 559.
- 5 F. A. J. Kerdesky, R. J. Ardecky, M. V. Lakshmikanthan and M. P. Cava, J. Am. Chem. Soc., 1981, 103, 1992.
- 6 R. J. Ardecky, D. Dominguez and M. P. Cava, J. Org. Chem., 1982, 47, 409.