Adsorption of Cations on TiO₂ Particles. A Method to Determine the Surface Density of **OH Groups**

Ling Zang, Chun-Yan Liu and Xin-Min Ren*

Inst. **of** *Photographic Chemistry, Academia Sinica, Beijing 100101, P.R. China*

The adsorption of some cations (Cu2+, Cd2+, Zn2+) on **TiOz** particles is successfully described by a modified Langmuir isotherm, from which the surface density of OH groups on $TiO₂$ is evaluated.

Recently there has been widespread interest in heterogeneous photocatalytic systems that accomplish the photodeposition of metallic ions with a view to prepare well-dispersed metalloaded semiconductor catalysts¹ or to recover noble or toxic metals from waste water.2 Much attention has been focused on particulate $TiO₂$ which is used as a photocatalyst owing to its stability with respect to photoanodic and acidic dissolution.³⁻⁷ It is commonly accepted that photodeposition is a process in which metallic ions are adsorbed on the surface of the $TiO₂$ followed by trapping of conduction band electrons. The adsorbtion ability of the metallic ion is an essential factor influencing the deposition rate. In many cases 8.9 it was found that the initial deposition rate varied with the starting concentration of metallic ions according to a Langmuir-Hinshelwood mechanism. This is not in agreement with our experimental results in which the adsorption of three cations $(Cu^{2+}, Cd^{2+}, Zn^{2+})$ on TiO₂ particles cannot be described by the Langmuir adsorption model. Here, we report a modified form of the Langmuir isotherm to elucidate the adsorption of the cations.

The $TiO₂$ powder used in this study was mainly in the anatase form as characterized by an X-ray diffraction spectrum recorded on a D/max-RB diffractometer (Rigaku Co.). TEM measurements (Phillips EM-400) indicate that the mean particle size is *ca. 150* nm. The specific surface area, measured by the BET method, is *ca.* 10.9 m² g⁻¹ (Micrometrics ASAP **2400).** The adsorption procedure was carried out in a Pyrex glass beaker using a 2.5 g $1⁻¹$ TiO₂ suspension, which was prepared by suspending $TiO₂$ powder (0.5 g) in doubly distilled water (200 ml) and sonicating for 20 min. The pH *(ca.* 6.4) of the suspension thus obtained decreased with addition of cations. This is indicative of the replacement of surface protons by adsorbed cations [eqn. *(l)],* in which one adsorbed

$$
\equiv \text{Ti}-\text{OH} + \text{M}^{2+} \rightleftharpoons \equiv \text{Ti}-\text{OM}^+ + \text{H}^+ \tag{1}
$$

cation releases one proton. The adsorbance of cations can thus be determined by measuring the decrease in pH of the $TiO₂$ suspension. Fig. *1* shows the adsorbance of the three cations $(Cu^{2+}, Zn^{2+}, \overline{Cd^{2+}})$ as a function of the equilibrium concentration. Of the ions studied, Cu2+ shows much stronger adsorption than the other two. This can be attributed to the much lower solubility product of Cu(OH)₂ *vs.* Cd(OH)₂ of $Zn(OH)$ ₂. In view of the fact that the data in Fig. 1 do not fit the Langmuir isotherm, it is reasonable to envisage that the process of eqn. (1) does not resemble the adsorption occurring at a solid-gas interface where Langmuir behaviour is observed.

Eqn. (1) is actually a replacement reaction and is a dynamic
 $R_a = k_a c_M N(1 - \theta)$ (2)

$$
R_a = k_a c_M N(1 - \theta) \tag{2}
$$

equilibrium. The adsorption rate (R_a) is proportional to the concentration of M^{2+} (c_M) and the number of unoccupied OH sites on TiO₂ surface, $N(1 - \theta)$ [eqn. (2)], where *N* is the total number of OH groups, θ is the surface coverage by M^{2+} and k_a is the rate constant for adsorption. Owing to the involvement of H⁺ in eqn. (1), the desorption rate (R_d) of M²⁺ depends not only on the number of \equiv Ti-OM⁺ *(NO)* but also on the concentration of free H⁺ (c_H) in the aqueous phase [eqn. (3)]

$$
R_{\rm d} = k_{\rm d} c_{\rm H} N \theta \tag{3}
$$

where k_d is the rate constant for desorption. This is in contrast

with the situation of Langmuir type adsorption, which can be regarded as a reaction with only the chemisorbed complex as the product. In such cases, the desorption rate of the adsorbates depends solely on the amount of the chemisorbed complex.

Fig. 1 Number of cations adsorbed onto the $TiO₂$ powder surface (N_a) as a function of the equilibrium concentration (c_M) in the suspension; Cu^{2+} (\square), Zn^{2+} (\square), Cd^{2+} (+)

Fig. 2 Plots of $1/N_a$ *vs.* c_H/c_M for Cu²⁺ (\Box), Zn^{2+} (\blacksquare) and Cd²⁺ (+). Data were obtained from Fig. 1.

At equilibrium, the rates of adsorption and desorption are equal, and θ can be evaluated from eqn. (4) where $K = k_a/k_d$ is

$$
\theta = K c_{\rm M} / (K c_{\rm M} + c_{\rm H}) \tag{4}
$$

the adsorption equilibrium constant. One can see that eqn. **(4)** is a modified form of the Langmuir isotherm as a consequence of the effect of $H⁺$ on the adsorption-desorption equilibrium. The number of adsorbed cations (N_a) can then be obtained $[eqn. (5)].$

$$
N_a = N\theta = N K c_M / (K c_M + c_H)
$$
 (5)

A plot of $1/N_a$ *vs.* c_H/c_M should be a straight line with a slope of 1/NK and an intercept of 1/N. This is confirmed by the results shown in Fig. 2, in which all of the plots show good linearity. The significant difference in slopes for Cu^{2+} (10³ K) $= 14.1$) and Zn^{2+} , Cd²⁺ (10³ *K* = 2.2, 2.4) reflects the difference in adsorption ability of Cu^{2+} relative to Zn^{2+} , $Cd²⁺$.

For each of the cations the intercepts in Fig. 2 are almost identical as predicted from eqn. *(5)* despite the wide variation in adsorption behaviour. On the basis **of** the total number of the OH groups (N) on 0.5 g TiO₂ and the specific surface area of the $TiO₂$ powder, the surface density of OH groups (0) on $TiO₂$ can be estimated. Values of 1.5, 1.4 and 1.2 per nm⁻² were obtained in the Cu²⁺, Cd²⁺ and Zn²⁺ experiments and can be compared with the value $(1.3 \text{ per nm}^{-2})$ obtained by acid-base titration.¹⁰ The close agreement of these σ values provides additional support for the adsorption model represented by eqns. **(4)** and *(5).*

This work was supported by the National Natural Science Foundation of China and Eastman Kodak Company.

Received, 21st April 1994; Corn. 4102371 D

References

- 1 M. A. Fox and M. T. Dulay, *Chem. Rev.,* 1993, 93, 341.
- 2 D. F. Ollis, E. Pelizzetti and N. Serpone, *Environ. Sci. Technol.,*
- 1991,25, 1523. 3 E. Borgarello, R. Harris **and** N. Serpone, *Nouv.* J. *Chim.* 1985,9, 743.
- **4** N. Serpone, E. Borgarello, M. Barbeni, E. Pelizzetti, P. Pichat, J.-M. Herrmann and **M.** A. Fox, J. *Photochem.,* 1987,36,373.
- 5 *E.* Borgarello, N. Serpone, **G.** Emo, R. Harris, E. Pelizzetti and C. Minero, *Inorg. Chem.*, 1986, 25, 4499.
- 6 **S.-I.** Nishimoto, B. Ohtani, H. Kajiwara and T. Kagiya, J. *Chem. SOC., Faraday Trans. 1* 1983,2685.
- *7* B. Ohtani, M. Kakimoto, H. Miyadzu, **S.-I.** Nishimoto and T. Kagiya, J. *Phys. Chem.,* 1988, 92,5773.
- *8* P. D. Fleischauer, H. K. Alan Kan and **J.** R. Shepherd, *J. Am. Chem. SOC.,* 1972, 94,283.
- 9 J.-M. Herrmann, J. Disdier and P. Pichat, J. *Phys. Chem.,* 1986, **90,** 6028; *J. Cataf.,* 1988, 113, 72.
- 10 B. Ohtani, **Y.** Okugawa, **S.-I.** Nishimoto and T. Kagiya, J. *Phys. Chem.,* 1987, 91, 3550.