1929

Synthesis and Properties of a Novel Redox System containing Fullerene and *p*-Benzoquinone

Masahiko Iyoda,* Fatema Sultana, Shigeru Sasaki and Masato Yoshida

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan

Synthesis of a fullerene derivative of *p*-benzoquinone was carried out using the [4 + 2]cycloaddition of C₆₀ to 3,6-dihydroxybenzocyclobutene, followed by DDQ oxidation.

Buckminsterfullerene, C_{60} , is known to possess considerably high electron affinity and low ionization potential on the basis of both experimental measurements and theoretical calculations.¹ Thus, C_{60} can play the role as a π -acceptor and π -donor. Especially, the abilities of C_{60} as the π -acceptor are very important properties,² and the chemical and electrochemical reductions of C_{60} and its derivatives have been extensively studied.^{3,4}

We are interested in the title compound 1, because of a potential donor-acceptor interaction between fullerene and

Fig. 1 Cyclic voltammogram of 1 in benzonitrile: sample, 2.5×10^{-4} mol dm⁻³; supporting electrolyte (Bu₄NClO₆) 0.1 mol dm⁻³; scan rate 0.1 V s⁻¹, vs. ferrocene/ferrocinium

Table 1 Redox potentials of C₆₀, 6, and 1^a

Compound	$E_{\rm red}^{\rm quinone}$	$E_{\rm red}^1$	$E_{\rm red}^2$	$E_{\rm red}^3$	
C ₆₀ 6 1	-0.92	-0.95 -1.07 -1.10	-1.35 -1.48 -1.50	-1.83 -2.00 -2.07	

^{*a*} All potentials in V vs. ferrocene/ferrocinium; benzonitrile; 0.1 mol dm^{-3} Bu₄NPF₆; 0.1 Vs⁻¹.

p-benzoquinone parts in 1, and because of the opposite acceptor-donor interaction between C_{60} part and semiquinone radical or hydroquinone dianion in 2 and 3. We report here the first synthesis of the fullerene derivative of quinones.

To construct the novel redox system composed of fullerene and 1,4-hydroquinone or *p*-benzoquinone, \tilde{C}_{60} was allowed to react with 3,6-dimethoxybenzocyclobutene 4⁵ in o-dichlorobenzene at 220 °C for 24 h to give the mono-adduct 6† in 44% yield, together with a mixture of isomers of the bis-adduct (34%) and the tris-adduct (11%). The removal of methyl groups in 6 was satisfactorily carried out using BBr3. Thus, the reaction of 6 with an excess of BBr₃ in benzene at 5 °C-room temp. for 24 h to give the hydroquinone derivative $7\dagger$ in 80% yield. Furthermore, the reaction of C₆₀ with 3,6-dihydroxybenzocyclobutene 5⁶ in *o*-dichlorobenzene at 230–235 °C for 24 h produced the mono-adduct 7 in one step in 32% yield. Oxidation of 7 with an excess of DDQ in benzene at room temp. for 15 min afforded the desired p-benzoquinone derivative 1† in 98% yield. The compound 1 is stable and can be stored under air at room temp.

It is known that the adducts of C_{60} to *o*-quinodimethane usually show the inversion of six-membered ring, and the activation energy for the ring inversion is estimated to be ΔG^{\ddagger} = 13.2–14.6 kcal mol⁻¹ (1 cal = 4.184 J).⁷ Thus, **6** and **7** show similar activation energies for the ring inversion (**6**: ΔG^{\ddagger} = 13.7 kcal mol⁻¹ at 25 °C; **7**: ΔG^{\ddagger} = 14.2 kcal mol⁻¹ at 40 °C). Interestingly, **1** shows the much lower activation energy (ΔG^{\ddagger} 11.0 kcal mol⁻¹ at -30 °C), although the quinone part of **1** may reduce the torsional and angular constraints. We now expect that the low barrier of inversion in **1** might be attributable to an electronic repulsion between the fullerene π -electron and the quinone part (acceptor-acceptor interaction).

In order to estimate the π - π interaction between the fullerene and quinone parts in 1, redox potentials of 1,6 and C₆₀ were measured by cyclic voltammetry. As shown in Table 1 and Fig. 1, 1 shows interesting redox properties. Thus, 6 shows typical three reduction waves which are cathodically shifted by 0.12 to 0.17 V as compared with those of C₆₀.⁸ In contrast, four reduction waves were observed in the case of 1 (Fig. 1). The first reduction is assigned to the reduction of *p*-benzoquinone part to the corresponding semiquinone radical 2. The second reduction (E_{red}^{1}) corresponds to the reduction to form the tetraanion, *i.e.* C₆₀²⁻⁻(CH₂)₂-C₆H₂O₂²⁻. Therefore, some interactions between the fullerene and *p*-benzoquinone parts can be expected in the anionic species.

This work was partly supported by the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, and Culture, Japan (05233224).

Received, 29th April 1994; Com. 4/02554G

Footnote

[†] Selected data for new fullerene derivatives. **6**: mp 350–360 °C (decomp.); FAB-MS m/z 885 (M + 1); ¹H NMR (CDCl₃, -50 °C) δ 3.96 (s, 6H, OCH₃), 4.33 (d, 2H, J 13.9 Hz, CH₂), 4.93 (d, 2H, J 13.9 Hz, CH₂) and 7.05 (s, 2H, =CH). 7: mp 280–300 °C (decomp.);

FAB-MS *m/z* 857 (M + 1); ¹H NMR ([²H₈]toluene, -15 °C) δ 4.00 (d, 2H, *J* 14.2 Hz, CH₂), 4.86 (d, 2H, *J* 14.2 Hz, CH₂), 4.14 (s, 2H, OH) and 6.25 (s, 2H, =CH). 1: **mp** 330–340 °C (decomp.); FAB-MS *m/z* 856 (M + 2); ¹H NMR (CD₂Cl₂, -70 °C) δ 4.11 (d, 2H, *J* 15.1 Hz, CH₂), 4.80 (d, 2H, *J* 15.1 Hz, CH₂), 7.09 (s, 2H, =CH); ¹³C NMR (CS₂/[²H₆]acetone, room temp.) δ 38.5 (CH₂), 65.8 (C₆₀), 136.3 (CH=CH), 137.3 (C=C), 184.0 (C=O), 141.0, 142.5, 142.9, 143.4, 143.9, 144.6, 145.4, 146.0, 146.3, 146.4, 146.6, 147.1, 147.3, 148.5 and 159.7 (15 signals of C₆₀).

References

- 1 W. Weltner, Jr. and R. V. Van Zee, Chem. Rev., 1989, 89, 1713.
- P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Grüner and J. D. Thompson, *Science*, 1991, 253, 301; P. W. Stephens, D. Cox, J. W. Lauher, L. Mihaly, J. B. Wiley, P.-M. Allemand, A. Hirsch, K. Holczer, Q. Li, J. D. Thompson and F. Wudl, *Nature*, 1992, 355, 331.
 P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich,
- 3 P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez and R. L. Whetten, *J. Am. Chem. Soc.*, 1991, **113**, 1050; P.-M. Allemand, G. Srdanov, A. Koch, K. Khemani and F. Wudl, *J. Am. Chem. Soc.*, 1991, **113**, 2780; D. M. Cox, S. Behal, M. Disko, S. M. Gorun, M. Greaney, C. S. Hsu, E. B. Kollin, J.

Millar, J. Robbins, W. Robbins, R. D. Sherwood and P. Tindall, J. Am. Chem. Soc., 1991, 113, 2940; D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufler, L. P. F. Chibante and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 4364; D. Dubois, K. M. Kadish, S., Flanagan and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 7773; Q. Xie, E. Pérez-Cordero and L. Echegoyen, J. Am. Chem. Soc., 1992, 114, 3978; W. K. Fullagar, I. R. Gentle, G. A. Heath and W. J. White, J. Chem. Soc., Chem. Commun., 1993, 525.

- 4 Recently, a cyclic voltammetry study of some fullerene-ferrocene derivatives has been reported: M. Maggini, A. Karlsson, G. Scorrano, G. Sandonà G. Farnia and M. Prato, J. Chem. Soc., Chem. Commun., 1994, 589.
- 5 T. Watabe, Y. Hosoda, K. Okada and M. Oda, *Bull. Chem. Soc. Jpn.*, 1987, **60**, 3801; M. Iyoda, S. Kitami, T. Yamauchi and M. Oda, *Chem. Lett.*, 1986, 2113.
- 6 M. Oda and Y. Kanao, *Chem. Lett.*, 1981, 37; M. Iyoda, M. Sakaitani, A. Kojima and M. Oda, *Tetrahedron Lett.*, 1985, **26**, 3719.
- 7 Y. Rubin, S. Khan, D. I. Freedberg and C. Yeretzian, J. Am. Chem. Soc., 1993, 115, 344; T. Tago, T. Minowa, Y. Okada and J. Nishimura, Tetrahedron Lett., 1993, 34, 8461.
- 8 T. Suzuki, Y. Maruyama, T. Akasaka, W. Ando, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 1994, 116, 1359.