A General Route to Sandwich and Half-sandwich Titanium Imido Complexes: X-Ray Structure of $[Ti(\eta^4-Me_8taa)(NBu^t)]$ (Me₄taa = tetramethyldibenzotetraaza[14]annulene)

Simon C. Dunn, Andrei S. Batsanov and Philip Mountford*

Department of Chemistry, University of Nottingham, Nottingham, UK NG7 2RD

The readily available complex $[Ti(NBut)Cl_2(Butpy)_2]$ (Butpy = 4-*tert*-butylpyridine) is a useful precursor to a range of sandwich- and half-sandwich titanium imido derivatives including $[Ti(\eta-C_9H_4Me_3)$ (NBut)Cl(Butpy)] (C_9H_4Me_3 = trimethylindenyl), $[Ti(\eta-C_5H_5)_2(NBut)(Butpy)]$, [Ti(dmbpz)(NBut)Cl(Butpy)] [dmbpz = tris(3,5-dimethylpyrazolyl) borate] and $[Ti(\eta^4-Me_ntaa)(NBut)]$ (n = 4 or 8; $Me_{(4 \text{ or } 8)}$ taa = (tetra- or octa-)methyl-dibenzotetraaza[14]annulene respectively}.

Much of the current interest in transition metal-ligand multiple bonds has focused on the early transition metals.¹⁻⁵ Reactive group 4 imido transients such as Bergman's [Zr(η^{5} -C₅H₅)₂(NBu^t)],² and Wolczanski's [Zr(Bu^t₃SiNH)₂(NSiBu^t₃)] and [Ti(Bu^t₃SiO)₂(NSiBu^t₃)]³ have demonstrated a rich chemistry including [2 + 2] cycloadditions and alkane and arene C-H bond activations. Group 4 metal-ligand multiply-bonded complexes which have reactive M=E functionalities yet are sufficiently kinetically stable to be isolated are rare. The few examples include the monomeric oxo- and sulfido-derivatives [Ti(η^{4} -Me₄taa)(E)] (Me₄taa = tetramethyldibenzotetraa-za[14]annulene; E = O, S), first reported by Goedken in 1982.⁴ The first fully characterised monomeric titanium imido complexes were first reported as late as 1990 by Roesky and Rothwell.⁵ We describe here the synthesis of monomeric

Scheme 1 Reagents and conditions: i, 6 Bu^tNH₂, CH₂Cl₂, 3 h followed by 2 Bu^tpy, CH₂Cl₂, 2 h, ca. 80%; ii, Na[C₃H₃] 2a or Li[C₅Me₅] 2b, thf, -40 °C, 1 h then room temp., 16 h, 30–50%; iii, Li[C₉H₄Me₃], thf, -50 °C, 1 h then room temp., 12 h, 40%; iv 2 Na[C₃H₅], thf, room temp., 16 h, ca. 50%; v, K(dmbpz), thf, room temp., 1.5 h, 55%; vi, Li₂[Me_nta], thf, room temp., 16 h, 70%. All the yields and conditions are unoptimised except those for the synthesis of [Ti(NBu^t)Cl₂-(Bu^tpy)₂] 1.

sandwich and half-sandwich titanium imido derivatives via a general route which should provide straightforward access to new chemistry of the $\{Ti(NR)\}$ unit.

We have found that the Bu^tpy(Bu^tpy = 4-*tert*-butylpyridine) titanium *tert*-butylimido complex, [Ti(NBu^t)Cl₂(Bu^tpy)₂] 1[†] is a useful precursor to monomeric titanium imido complexes.[‡] The new compound 1 is readily prepared in 25 g quantities and *ca.* 80% yield from TiCl₄, Bu^tNH₂ and Bu^tpy (see Scheme 1). Other derivatives [Ti(NBu^t)Cl₂(4-NC₅H₄R)₂] (R = H or Me) may be similarly prepared.⁶

Řeaction of $[Ti(NBu^t)Cl_2(Bu^tpy)_2]$ 1 with one equivalent of Na[C₅H₅] or Li[C₅Me₅] gave the monomeric half-sandwich cyclopentadienyl complexes [Ti(η -C₅R₅)(NBu^t)Cl(Bu^tpy)] (R = H, 2a; or Me, 2b) (Scheme 1).§ The analogous reaction of 1 with Li[C₉H₄Me₃] (C₉H₄Me₃ = trimethylindenyl) afforded the first group 4 indenyl-imido derivative [Ti(η -C₉H₄Me₃)(N-Bu^t)Cl(Bu^tpy)] 3 in *ca.* 40% yield.

Treatment of 1 with two equivalents of Na[C₅H₅] in thf followed by recrystallisation from pentane afforded the red air- and moisture-sensitive bis(η -cyclopentadienyl) derivative [Ti(η -C₅H₅)₂(NBu^t)(Bu^tpy)] **4**. The oxo analogue of **4**, [Ti(η -C₅Me₅)(O)(4-NC₅H₄R)] (R = H, Ph), has only recently been reported.⁷ [Ti(η -C₅H₅)₂(NBu^t)(Bu^tpy)] **4** is analogous to the Zr congeners [Zr(η -C₅H₅)₂(NBu^t)(L)] (L = thf, OPPh₃)² and thus promises an interesting reaction chemistry. The only titanium analogues of **4** are the vinylimido complexes [Ti(η -C₅H₅)₂{NC(CH₂)Bu^t}(L)] (L = PMe₃, py, 4-NC₅H₄NMe₂) prepared from Tebbe's reagent⁸ and the nitrile Bu^tC=N.⁹

We were also interested in preparing N-donor half-sandwich derivatives of the ${Ti(NBu^t)}$ unit. $[Ti(NBu^t)Cl_2-(Bu^tpy)_2]$ 1 reacted smoothly at room temperature with K(dmbpz) in thf to afford $[Ti(dmbpz)(NBu^t)Cl(py-Bu^t)]$ 5 in 55% yield. The tris(3-isopropylpyrazolyl)borate and tris(3isopropyl-4-bromopyrazolyl)borate analogues of 5 may be similarly prepared.⁶

Pyrazolylborato-imido complexes are relatively rare¹⁰ and [Ti(dmbpz)(NBu^t)Cl(py-Bu^t)] 5 is the first example of a group 4 pyrazolylborato-imido derivative.

Fig. 1 Molecular structure of [Ti(Me₈taa)(NBu^t)] **6b**; hydrogen atoms omitted for clarity. Selected distances: Ti–N(5) 1.724(4), N(5)–C(27) 1.444(6), Ti–N(1) 2.070(4), Ti–N(2) 2.093(4), Ti–N(3) 2.089(4), Ti–N(4) 2.091(4), Ti–N(4) plane) 0.76 Å; angle: Ti–N(5)–C(27) 164.3(3)°. Ti…(N₄ plane) is the distance of the titanium atom from the least-squares plane defined by the atoms N(1), N(2), N(3) and N(4)

The aza-macrocyclic ligands, tetra- and octa-methyldibenzotetraaza[14]annulene (Me₄taa and Me₈taa respectively),¹¹ have been shown to stabilise metal-chalcogen multiple bonds in the complexes [Ti(Me_ntaa)(E)] (n = 4, 8; E = O, S)⁴ and [Ge(Me₈taa)(E)] (E = S, Se, Te).¹² In particular, the complexes [Ti(Me₄taa)(E)] have a rich addition and cycloaddition chemistry of the Ti=E multiple bond.^{4b} Reaction of 1 with one equivalent of the dilithium salts Li₂[Me₄taa]^{13a} or Li₂[Me₈taa]^{13b} in thf afforded the first group 4 macrocyclic imido derivatives [Ti(Me₄taa)(NBu^t)] **6a** and [Ti(Me₈taa)-(NBu^t)] **6b** respectively.

The crystal structure of **6b** is shown in Fig. 1.|| The Ti atom lies 0.76 Å out of the macrocycle N₄ plane, and the Me₈taa ligand is saddle-shaped as expected. The Ti-N-Bu^t angle of 164.3(3)° is sufficiently close to linearity that we may infer that the Bu^tN ligand is acting as a four-electron donor. The Ti=NBu^t bond length [Ti-N(5) 1.724(4) Å] is quite long compared to titanium-imido linkages in general [range 1.672(7)-1.723(4) Å, seven examples; mean 1.710(1) Å]^{1a-c,5} and the longest found for a Ti=NBu^t linkage {the other values being 1.698(4) Å for [Ti(η-C₅Me₅)(NBu^t)Cl(py)]^{1b} and 1.672(7) Å for [Ti(NBu^t)Cl₂(OPPh₃)₂]^{1c}}. The complexes **6** are formally fourteen-valence-electron species and promise an exciting reaction chemistry. Preliminary studies have shown that **6a** reacts with H₂O to afford the known yellow oxo complex [Ti(Me₄taa)-(O)]⁴ in 100% yield, and with CO₂ (1 atm pressure) to give an, as yet, unidentified product.

We thank the EPSRC for a studentship (to S. C. D.), the University of Nottingham for a New Lecturer's Research Grant (NLRG049) to P. M., Professor J. A. K. Howard for the use of X-ray facilities and Professor M. L. H. Green, FRS, for his continued interest in our work and for helpful discussions.

Received, 24th June 1994; Com. 4/038331

Footnotes

[†] Selected ¹H NMR data: 1 (250 MHz, CDCl₃, room temp.) 9.18 (4 H, d, J = 6.6 Hz, 2,6-NC₅H₄Bu^t), 7.42 (4 H, d, J = 6.6 Hz, 3,5-NC₅H₄Bu^t)], 1.36 (18 H, s, NC₅H₄Bu^t) 0.99 (9 H, s, NBu^t).

2a (250 MHz, CDCl₃, room temp.) δ 8.63 (2 H, d, J = 6.7 Hz 2,6-NC₅H₄Bu⁴), 7.42 (2 H, d, J = 6.7 Hz, 3,5-NC₅H₄Bu⁴), 6.34 (5 H, s, C₅H₅), 1.35 (9 H, s, NC₅H₄Bu⁴), 1.08 (9 H, s, NBu⁴).

3 (250 MHz, CD_2Cl_2 , 213 K) & 7.85 (2 H, d, J = 6.6 Hz, 2,6-NC₅H₄Bu^t), 7.41 (1 H, d, J = 8.3 Hz, 4- or 7-C₉H₄Me₃), 7.30 (2 H, d, J = 6.6 Hz, 3,5-NC₅H₄Bu^t), 6.99 [1 H, d of d, J = 8.0, 8.3 Hz, 5- or 6-C₉H₄Me₃], 6.82 (1 H, d of d, J = 8.0, 8.3 Hz, 6- or 5-C₉H₄Me₃), 6.60 (1 H, d, J 8.3 Hz, 7- or 4-C₉H₄Me₃), 2.80 (3 H, s, 2-C₉H₄Me₃), 2.46, 2.20 (2 × 3 H, 2 × s, 1- and 3-C₉H₄Me₃), 1.28 (9H, s, NC₅H₄Bu^t), 0.99 (9 H, s, NBu^t).

5 (500 MHz, CD₂Cl₂, 223 K) δ 9.74 (1 H, d, J 6.0 Hz, 2- or 6-NC₅H₄Bu¹), 7.55 (1 H, d of d, J = 6.0, 2.1 Hz, 3- or 5-NC₅H₄Bu¹), 7.28 (1 H, d, J = 6.0 Hz, 6- or 2-NC₅H₄Bu¹), 7.19 (1 H, d of d, J 6.0, 2.1 Hz, 5- or 3-NC₅H₄Bu¹), 5.90, 5.88, 5.39 (3 × 1 H, 3 × s, N₂C₃Me₂H), 4.7 (1 H, br s, BH), 2.75, 2.41, 2.37, 2.24, 2.19 (5 × 3 H, 5 × s, N₂C₃Me₂H), 1.28 (9 H, s, NC₅H₄Bu¹), 1.16 (3 H, s, N₂C₃Me₂H), 1.10 (9 H, s, NBu¹).

6a (250 MHz, CDCl₃, room temp.) δ 7.32–7.36, 7.18–7.24 (2 × 4 H, 2 × m, C₆H₄ of Me₄taa ring), 5.13 (2 H, s, MeNCHNMe), 2.40 (12 H, s, 4 × NMe), 0.26 (9 H, s, NBu⁴).

§ Two pyridine analogues of 2 have recently been described by Roesky $\{31-45\% \text{ overall yield from } Bu^{t}NH_{2} \text{ and } [Ti(\eta-C_{5}R_{5})Cl_{3}], C_{5}R_{5} = C_{5}Me_{5} \text{ or } C_{5}H_{4}(SiMe_{3})\}.^{1b}$

Cystal data for 6b: C₃₀H₃₉N₅Ti, M = 517.6, triclinic, space group $P\bar{I}$, T = 150 K, a = 9.920(9), b = 12.181(8), c = 13.305(14) Å, $\alpha =$ 77.16(7), $\beta = 71.83(7)$, $\gamma = 68.25(6)^\circ$, U = 1408(2) Å³, Z = 2, $D_c =$ 1.22 g cm⁻³, F(000) = 552, grapite-monochromated Mo-Kα radiation, $\lambda = 0.71073$ Å, $\mu = 3.3$ cm⁻¹. The intensities of 5204 reflections (4953 independent) were measured on a Rigaku AFC6S diffractometer (Lehmann-Larsen scan, $\theta < 25^\circ$) at 150 K. The structure was solved by direct methods (SHELXS-86) and refined in anisotropic approximation (H atoms isotropic in riding model) by full-matrix least-squares (SHELXTL-93) against F^2 for all reflections to $wR_2 =$ 0.174 [to $R_1 = 0.069$ for 3014 reflections with $I > 2\sigma(I)$]. Large displacement parameters of the methyl carbon atoms in the NBu^t ligand probably indicate static (rotational) disorder of the NBu^t group. Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- (a) J. E. Hill, P. E. Fanwick and I. P. Rothwell, *Inorg. Chem.*, 1991, 30, 1143; R. Duchateau, A. J. Williams, S. Gambarotta and M. Y. Chang, *Inorg. Chem.*, 1991, 30, 4863; C. H. Zambrano, R. D. Profilet, J. E. Hill, P. E. Fanwick and I. P. Rothwell, *Polyhedron*, 1993, 12, 689; (b) Y. Bai, M. Noltemeyer and H. W. Roesky, Z Naturforsch, Teil B, 1992, 46, 1357; (c) C. H. Winter, P. H. Sheridan, T. S. Lekebandova, M. J. Heeg and J. W. Proscia, J. Am. Chem. Soc., 1992, 114, 1095; (d) W. A. Howard and G. Parkin, J. Am. Chem. Soc., 1994, 116, 606; P. L. McGrane, M. Jensen and T. Livinghouse, J. Am. Chem. Soc., 1993, 115, 11485.
- A. M. Baranger and R. G. Bergman, J. Am. Chem. Soc., 1994, 116, 3822; K. E. Meyer, P. J. Walsh and R. G. Bergman, J. Am. Chem. Soc., 1994, 116, 2669; P. J. Walsh, F. J. Hollander and R. G. Bergman, Organometallics, 1993, 12, 3705.
 C. P. Schaller, J. B. Bonanno and P. T. Wolczanski, J. Am. Chem.
- 3 C. P. Schaller, J. B. Bonanno and P. T. Wolczanski, J. Am. Chem. Soc., 1994, 116, 4133; J. L. Bennet and P. T. Wolczanski J. Am. Chem. Soc., 1994, 116, 2179.
- 4 (a) V. L. Goedken and J. A. Ladd, J. Chem. Soc., Chem. Commun., 1982, 142; (b) C. E. Housmekerides, D. L. Ramage, C. M. Kretz, J. T. Schontz, R. S. Pilato, G. L. Geoffroy, A. L. Rheingold and B. S. Haggerty, Inorg. Chem., 1992, 31, 4453.
- 5 H. W. Roesky, H. Voelker, M. Witt and M. Noltemeyer, Angew. Chem., Int. Ed. Engl., 1990, 29, 669; J. E. Hill, R. D. Profilet, P. Fanwick and I. P. Rothwell, Angew. Chem., Int. Ed. Engl., 1990, 29, 664.
- 6 S. C. Dunn, K. A. Butakoff and P. Mountford, unpublished results.
- 7 M. R. Smith, P. T. Matsunaga and R. A. Andersen, J. Am. Chem. Soc., 1993, 115, 7049.
- 8 F. N. Tebbe, G. W. Parshall and G. S. Reddy, J. Am. Chem., Soc., 1978, 100, 3611.
- 9 K. M. Doxsee and J. B. Farahi, J. Chem. Soc., Chem. Commun., 1990, 1452; K. M. Doxsee, J. B. Farahi and H. Hope, J. Am. Chem. Soc., 1991, 113, 8889.
- 10 L. Luan, P. S. White, M. Brookhart and J. L. Templeton, J. Am. Chem. Soc., 1990, 112, 8190; L. Luan, M. Brookhart and J. L. Templeton, Organometallics, 1992, 11, 1433; J. Sundermeyer, J. Putterlik, M. Foth, J. S. Fied and N. Rawnesas, Chem. Ber., 1994, 127, 1201.
- 11 F. A. Cotton and J. Czuchajowska, Polyhedron, 1990, 9, 2553.
- 12 M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun., 1994, 1351.
- 13 (a) S. De Angelis, E. Solari, E. Gallo, C. Floriani, A. Chiesi-Villa and C. Rizzoli, *Inorg. Chem.*, 1992, **31**, 2520; (b) R. F. Jordan, personal communication.