Successive Diarylation at the Carbon Positions (2/4 and 2/5) of 1*H*-Imidazole and its Application to the Total Synthesis of Nortopsentin D

Ikuo Kaswasaki, Masayuki Yamashita and Shunsaku Ohta*

Kyoto Pharmaceutical University, Misasagi, Yamashinaku, Kyoto 607, Japan

Nortopsentin D, an antifungal 2,4-diindolylimidazole, is synthesized by use of a successive and regioselective diarylation, in which *N*-protected 2,4,5-tri- and 4,5-di-bromoimidazole derivatives are treated with *N*-silylated 3-indolylboric acid in the presence of a palladium(o) catalyst.

Nortopsentins 1a-1d, 2,4-di(3-indolyl)-1*H*-imidazole and its derivatives, are antifungal marine alkaloids, which were isolated from a sponge.¹ Regioselective introduction of carbogenic substituents into the 4- and/or 5-position(s) of the imidazole nucleus is still an interesting subject in the field or

organic synthesis,² and in particular selective arylation of the positions has been an undeveloped area.

As shown in Table 1 (runs 1-7), we found that the cross-coupling of the tribromoimidazoles 2³ with aryl metal reagents at the 2-position proceeded satisfactorily when an

Table 1 Cross-coupling of 2 and 3 with ArM

Run	Ar ¹ [M] (equiv.)	Ar ² B(OH) ₂ (equiv.)	R	Reaction time/h	Yield of product(s) (%)
1	Ph[ZnCl](1)		Me	5	$45.0^{a}(3a), 8.9^{b}(5)$
2 3	Ph[MgBr](1)		Me	10	$14.5^a(3a), 27.3^b(5)$
3	$Ph[B(OH)_2](1)$		Me	8	$94.4^{b}(3a)$
4 5	$Ph[B(OH)_2](2)$		Me	15	64.5^a (3a), 30.0^b (4)
5	$2\text{-MeOC}_6H_4[B(OH)_2](1)$		Me	8	$92.0^{b}(3b)$
6	(1) (B(OH) ₂]	-	Me	8	$79.5^{b}(3c)$
7	[B(OH) ₂] N TBDMS (1)	_	(CH ₂) ₂ SiMe ₃	8	88.5 ^b (3d)
0		Dk (1)	M-	10	70.06(8-)
8 9	Ph Ph	Ph (1)	Me	10	70.9 ^b (8a)
9	rn ,	$2\text{-MeOC}_6H_4(1)$	Me	10	71.5^b (8b)
10		(1)	(CH ₂) ₂ SiMe ₃	10	68.3 ^b (8c)
	TBDMS	TBDMS			

^a Determined by GLC with an internal standard. ^b Isolated yield.

7b: $Ar^2 = 2 - MeOC_6H_4$ (90.7%)

equimolar amount of arylboric acid was used in the presence of a catalytic amount of $Pd^0(PPh_3)_4$ and sodium carbonate.⁴ Introduction of a second aryl group into the 5-position of the 2-arylimidazoles 3 also proceeded in a similar manner to give 8 in moderate yields (runs 8–10). These successive diarylations i.e. $2 \rightarrow 8$ could also be conveniently performed in a single reaction vessel (one-pot procedure).

The bromine atom at the 5-position of $\bf 3a$ was removed by lithiation followed by quenching with water^{2d} to give $\bf 6$ in 85.1% yield. Introduction of the aryl group into the 4-position of $\bf 6$ similarly proceeded under the conditions of run 3 to give 2,4-diarylimidazoles $\bf 7a$ (62.9%) and $\bf 7b$ (90.7%).

The bromine atom and the silyl protecting group of 8c were removed by treatment with *n*-butyllithium-water and then with tetrabutylammonium fluoride to give nortopsentin D 1a in 67.1% yield.⁵

Received, 14th February 1994; Com. 4/00894D

References

- S. Sakemi and H. H. Sun, J. Org. Chem., 1991, 56, 4304; H. H. Sun, S. Sakemi, S. Gunasekera and Y. Kashman, US Pat., 4,970,226 [Chem. Abstr., 1991, 115, 35701z].
- 2 (a) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, H. Katsuma, R. Nasako, K. Kobayashi and K. Ogawa, Chem. Pharm. Bull., 1992, 40, 2681; (b) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, Y. Nagashima and T. Yoshikawa, Chem. Pharm. Bull., in the press; (c) B. Iddon and B. L. Lim, J. Chem. Soc., Perkin Trans. 1, 1983, 271, 279, 735; (d) B. Iddon, N. Kahn and B. L. Lim, J. Chem. Soc., Perkin Trans. 1, 1987, 1445, 1453; (e) A. J. Carpenter and D. J. Chadwick, Tetrahedron, 1986, 42, 2351; (f) R. M. Turner, S. D. Lindell and S. V. Ley, J. Org. Chem., 1991, 56, 5739; (g) S. Knapp, J. Albaneze and H. J. Schugar, J. Org. Chem., 1993, 58, 997; (h) J. F. O'Connell, J. Paquette, W. E. Yelle, W. Wang and H. Rapopport, Synthesis, 1988, 767; (i) B. H. Lipshuz and W. Hagen, Tetrahedron Lett., 1992, 33, 5865.
- 3 K.-E. Stensiö, K. Wahrberg and R. Wahren, Acta Chem. Scand., 1973, 27, 2179; B. Iddon, N. Kahn and B. L. Lim, J. Chem. Soc., Perkin Trans. 1, 1987, 1437.
- 4 A. Alvarez, A. Guzmán, A. Ruiz, E. Velarde and J. M. Muchowski, J. Org. Chem., 1992, 57, 1653.