Tertiary Phosphines and P-Chiral Phosphinites Bearing a Fullerene Substituent

Shigeru Yamago, Masao Yanagawa and Eiichi Nakamura*

Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

The reaction of a lithiated phosphine–borane or a posphinite borane with C_{60} followed by removal of the BH₃ group affords a phosphine or a phosphinite bearing a fullerene substituent, which undergoes complexation with BH₃ and PtCl₂ selectively on the phosphorus atom with 1:1 and 2:1 stoichiometry.

We report here the synthesis of a new class of tertiary phosphines 1, including *P*-chiral derivatives 8 and 11, which can serve as potential candidates for new design of metal ligands for asymmetric synthesis. The synthesis was achieved in a straightforward manner by the addition of a metalated phosphine–borane to C₆₀ followed by removal of the borane group from the adduct with DABCO (Scheme 1). The C₆₀H group in 1 is an unusual sp³ alkyl substituent with steric bulk, photoactivity¹ and potential to bind to certain metal atoms.² The fullerene–phosphines have considerable thermal stability, and, notably, the *P*-chiral phosphinite 8 was also found to be configurationally stable. The C₆₀H group brings about considerable steric congestion and creates a novel coordination sphere in the metal complex.

The borane complex of a secondary phosphine 4 is air-stable and easy to handle.³ The proton attached to the phosphorus atom in 4 can be easily deprotonated to give the corresponding anion 5.⁴ We found that 5 readily adds across the strained and electron-deficient double bond of [60]fullerene. Thus, addition of Ph₂PLi·BH₃, prepared by BuLi-deprotonation of Ph₂PH·BH₃ (457 mg, 2.2 mmol) in 5 ml of THF in the presence of HMPA (394 mg, 4.4 mmol), to a 650 ml toluene solution of C₆₀ (800 mg, 1.1 mmol) took place at -78 °C (1 h) to give the adduct **3a** in 82% isolated yield (830 mg) after quenching with HCl in ethyl acetate and purification by silica gel chromatography.[†] The reaction of MePhPLi·BH₃ also took place smoothly, albeit slowly, at -40 °C to give the adduct **1b** in 46% yield. The borane complexes were found to be stable in air at room temperature for months.⁵

The structure of the phosphine-borane **3a** was assigned by ¹H, ¹³C, ¹¹B and ³¹P NMR spectroscopy, which indicated that the addition to C₆₀ took place at the 6,6-ring junction. In the ¹H NMR spectrum of **3a**, the proton on C₆₀ appears as doublet at δ 6.94. (J_{P-H} 25.7 Hz). The large P-H coupling is consistent with the vicinal and *cis* relative stereochemistry between the proton and the phosphorus atom⁶

The ¹³C{¹H, ³¹P} NMR spectrum of **3a** (CDCl₃–CS₂; CDCl₃ at δ 77.0) showed 30 sp² signals and two sp³ signals in the C₆₀ region, indicating the C_s symmetry of the molecule. The doublet at δ 66.5 in the ¹³C{¹H} NMR spectrum is coupled strongly (32.4 Hz) to the phosphorus atom and hence assigned to the carbon connected to the phosphorus atom. Another sp³ carbon at δ 58.2 with small coupling (J_{P-C} 9.5 Hz) was assigned to the carbon connected to the hydrogen. The ¹¹B{¹H} NMR (CDCl₃–CS₂; H₃BO₃ at δ 0.3) spectrum showed a single broad signal at δ –58.74, and the ³¹P{¹H} NMR (CDCl₃–CS₂; 85% H₃PO₄ at δ 0.0) spectrum also showed a single signal appearing at δ 39.98 (J_{B-P} = ca. 44.2 Hz). The relatively small J_{B-P} [cf. Ph₃P·BH₃; J(¹¹B–P) = 57 Hz]⁷ suggests⁸ that the C₆₀H group is a stronger electron-withdrawing group than a phenyl group.

Teatment of the borane complex **3a** with DABCO (20 equiv.) at room temp. for 1.5 h under nitogren removed the borane group to give quantitatively the phosphine **1a** as black power. The removal of the borane group caused a systematic upfield shift of the ¹H NMR signals owing to the decreased electron withdrawal by the phosphorus atom. Thus, the proton on C₆₀ was shifted upfield to δ 6.82 ($J_{PH} = 15.6$ Hz). Treatment of **1a** with MCPBA (1 equiv.) gave the phosphine oxide **2a**.[‡] The reaction of **1a** with 1 equiv. of BH₃·THF at -78 °C selectively took place on the phosphorus atom to give back **3a** in quantitative yield.⁹

Finally, we describe the synthesis of P-chiral fullerenephosphines and their transition metal complexes. Thus, the (+)-menthyl phosphinite-borane⁴ 6 (2 equiv.) was lithiated and added to C_{60} in a manner described above. The adduct 7 was isolated in 71% yield [C(C₆₀-H), δ 7.17, J_{P-H} 26.0 Hz] (Scheme 2). Alternatively, the lithium salt of the diastereoisomeric phosphinite-borane 9 gave 10 in 46% yield [C(C₆₀-H), δ 7.00, J_{P-H} 26.0 Hz] (Scheme 3). The two adducts were shown to be diastereoisomerically pure by ¹H NMR, indicating that the addition took place stereospecifically (most likely with retention of the P chirality).⁵ The B-P bond in a phosphinite-borane complex is so strong that it is generally difficult to remove the BH₃ group by amine treatment. However, the free phosphines $\mathbf{\tilde{8}}[C(\hat{C}_{60}-\hat{H}), \delta 6.86, J_{P-H} 13.7]$ Hz) and 11 [C(C₆₀- \dot{H}), δ 6.81, J_{P-H} 14.2 Hz] could be obtained in ca. 90% yield by treatment with 100-120 equiv. of DABCO at room temperature for 15 h with complete retention of the phosphorus chirality. The chirality at phosphorus of the phosphinite 8 was found to be remarkably stable (no sign of epimerization upon heating for 14 h at 80 °C in degassed toluene).

Scheme 1 Reagents and conditions: i, BuLi, HMPA-THF, -78 °C; ii, C₆₀, toluene, then 0.04 mol l⁻¹ HCl; iii, BH₃·THF, -78 °C; iv, DABCO, room temp.; v, PtCl(PhCN)₂

Scheme 2 Reagents and conditions: i, BuLi, then C_{60} , then H⁺; ii, DABCO

Scheme 3 i, ii as for Scheme 2

2094

Scheme 4 Reagents and conditions: 8 (0.4 equiv.) + PdCl₂(PhCN)₂ (0.2 equiv.), Et₂O, 0 °C, 21 h

The phospinite 8 formed a complex with PtCl₂. Treatment of 8 with $PtCl_2(PhCN)_2$ (0.5 equiv.) in toluene afforded a clear solution, which yielded an analytically pure complex, $PtCl_2$ ·(8)₂, as a brown powder after concentration and precipitation from CHCl₃ with hexane. The ³¹P NMR spectrum of the complex showed a single phosphorus signal at δ 90.7 with J_{P-Pt} 4.90 kHz, indicating that the metal is coordinated selectively to the phosphorus atom.

A palladium complex of 8, prepared by treatment of 8 with 0.5 equiv. of PdCl₂(PhCN)₂, catalysed, albeit in low optical yield (8% ee), the asymmetric cross coupling of 1-phenylethylmagnesium chloride and β-bromostyrene to afford 1,3diphenylbut-1-ene (Scheme 4).¹⁰ The observed chirality induction suggests that 8 remains coordinated to the palladium metal during catalytic turnover.

In summary, we have synthesized the first and the simplest member of tailor-made C60-containing metal ligands as represented by the general structure in A. Suitable adjustment of the oxygenation level of compounds such as 8 may also be useful for biochemical investigations of buckminsterfullerenes.11,12

We thank Professor T. Imamoto for valuable suggestions on phosphine-borane chemistry and Dr T. Hinomoto of JEOL Co. for NMR measurements. Financial support from the Ministry of Education, Culture and Science and the Tokuvama Science Foundation is gratefully acknowledged.

Received, 16th May 1994; Com. 4/02907K

Footnotes

† Selected physical properties of **3a**: $R_f 0.21$ (20% toluene in hexane); IR ν_{max}/cm^{-1} (CHCl₃) 3020, 2400, 1440, 1225, 1210, 790, 530; ¹H NMR (400 MHz, CS₂-CDCl₃) δ 1.50-2.30 (br m, 3 H, BH₃), 6.94 (d, ³J_{PH} 25.7 Hz, 1 H, C₆₀H), 7.61–7.68 (m, 6 H, *m*- and *p*-C₆H₅), 8.51 (ddd, J 14.2, 8.2, 1.7 Hz, 4 H, o-C₆H₅); ¹³C NMR (125 MHz, C), 135.79 (d, J_{CP} 2.0 Hz, C₆₀, 2 C), 137.25 (d, J_{CP} 4.8 Hz, C₆₀, 2 C); $139.20,\,140.36,\,141.20,\,141.21,\,141.36,\,141.66,\,141.77,\,141.90,\,142.04,$ 142.46, 142.64, 143.21, 144.22, 144.72, 145.32, 145.35, 145.45, 145.67, 146.16, 146.24, 146.34, 146.40, 146.51, 146.54 (all C₆₀, 2 C); 147.13 (C_{60}) , 147.23 (C_{60}) , 149.76 $(d, J_{CP} 4.8 \text{ Hz}, C_{60}, 2 \text{ C})$, 152.54 $(d, J_{CP} 5.7 \text{ Hz})$ Hz, C₆₀, 2 C); ³¹P NMR (162 MHz, CS₂-CDCl₃) δ 39.98; ¹¹B NMR (128 MHz, CS₂-CDCl₃) δ -58.74; FAB MS m/z 921 $(M^+ + 1), 720-724 (C_{60}).$

t The solid phosphine 1a is moderately air-sensitive, but can be handled in air without oxidation to 2a.

References

- 1 J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Phys. Chem., 1991, 95, 11.
- 2 P. Fagan, J. C. Calabrese and B. Malone, Acc. Chem. Res., 1992, 25, 134.
- 3 T. Imamoto, J. Synth. Org. Chem., Jpn., 1987, 45, 592.
- 4 T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and K. Sato, J. Am. Chem. Soc., 1990, **112**, 5244.
- 5 BH₃ is known to react with C_{60} above 0 °C: C. C. Henderson and P. A. Cahill, Science, 1993, 259, 1885.
- 6 A. A. Bothner-By and R. H. Cox, J. Phys. Chem., 1969, 73, 1830; M. Tsuboi, S. Takahashi, Y. Kyogoku, H. Hayatsu, R. Ukita and M. Kainosho, Science, 1969, 166, 1504.
- 7 K. C. Nainan and G. E. Ryschkewitsch, Inorg. Chem., 1969, 8, 2671.
- 8 A. H. Cowley and M. C. Damasco, J. Am. Chem. Soc., 1971, 93, 6815; R. W. Rudolph and C. W. Schultz, J. Am. Chem. Soc., 1971, 93. 6821.
- 9 Cf. S. Yamago, H. Tokuyama, E. Nakamura, M. Prato and F. Wudl, J. Org. Chem., 1993, 58, 4796.
- 10 T. Hayashi, M. Konishi, M. Fukushima, T. Mise, M. Kagotani, M. Tajika and M. Kumada, J. Am. Chem. Soc., 1982, 104, 180.
- 11 R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, C. Wilkins, S. H. Friedman, D. L. DeCamp and G. L. Kenyon, J. Am. Chem. Soc., 1993, 115, 6506; R. F. Schinazi, R. Sijbesma, G. Srdanov, C. L. Hill and F. Wudl, Antimicro. Agents Chemo., 1993, **37**, 1707. 12 H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki and Y.
- Sugiura, J. Am. Chem. Soc., 1993, 115, 7918.