Trinuclear Species in Vanadium(II) Chemistry

David L. Hughes,^a Leslie F. Larkworthy,^bG. Jeffery Leigh,^{* a} Celine J. McGarry,^bJ. Roger Sanders,^a Gallienus W. Smith^b and Jaísa S. de Souza^at

^a Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK BN1 9RQ
^b Department of Chemistry, University of Surrey, Guildford, UK GU2 5XH

The triangulo-{V₃Cl₃} unit is shown to form easily in solutions from mononuclear vanadium(II) compounds such as $[VCl_2(tmeda)_2]$ and structural studies show that this unit is contained in a trigonal bipyramidal arrangement with either chloride ions or methoxide ions at the apices, as in $[V_3Cl_3(\mu_3-Cl)_2(tmeda)_3]^+$, $[V_3Cl_3(\mu_3-OMe)_2(tmeda)_3]^+$ and $[V_3Cl_3(\mu_3-OMe)_2(depe)_3]^+$.

There has been considerable interest of late in the synthesis of simple, mononuclear compounds of vanadium(11) to explore its chemistry, in particular in its reactions with dinitrogen.¹ We have developed^{2–4} simple syntheses for $[V(H_2O)_6]^{2+}$ and compounds derived from it, and $[VCl_2(tmeda)_2]$ (tmeda = tetramethylethylenediamine), first described by Gambarotta,⁵ has proved very useful in developing V^{II} organometallic chemistry. However, our attempts to produce vanadium(11) diiodides have been less than entirely successful, generally giving unexpected results.

For example, we found that $[VCl_2(tmeda)_2]$, $[V_2Cl_3(thf)_6]$ [AlCl_2Et_2]⁶ and tmeda, reacts with Me₃SiI in boiling thf to yield a turquoise precipitate (25% yield) not of the expected [VI2(tmeda)2] but of tri-µ-chloro-di- μ_3 -chloro-tris(tetramethylethylenediaminevanadium) iodide, [V₃Cl₅(tmeda)₃]I, 1 whose structure was shown by X-ray analysis. The trinuclear cation has already been characterised in other salts.⁷ Subsequently we showed that the blue solution of [VCl₂(tmeda)₂] in thf at room temperature immediately turned turquoise upon addition of Na[BPh4]. On cooling this solution to -20 °C, blue crystals of [VCl₂(tmeda)₂] developed. Upon warming again to room temperature the crystals dissolved, giving on layering with hexane, turquoise crystals of [V₃Cl₅(tmeda)₃][BPh₄], 2, (55% yield), whose structure was characterised by X-ray analysis (Fig. 1).‡ This structure contains a cation identical to that in $[V_3Cl_5(tmeda)_3]I$, but in this case the X-ray data allowed a better structure resolution.

We have also shown that turquoise $[V_3Cl_5(tmeda)_3][BPh_4]$ reacts with tmeda and chloride ion (but not with either,

Fig. 1 Structure of the cation in $[V_3Cl_5(tmeda)_3]$ [BPh₄], showing the atom numbering scheme (carbon atoms are labelled with their number only). Principal mean dimensions: V…V 3.142(7), V–Cl_{eq} 2.500(4), V–Cl_{cap} 2.519(6), V–N 2.214(2) Å; Cl_{eq}–V–Cl_{eq} 162.1(2), V–Cl_{eq}–V 77.8(1)°.

separately) in thf to yield blue $[VCl_2(tmeda)_2]$. Evidently a facile equilibrium exists:

$$3[VCl_2(tmeda)_2] \rightleftharpoons [V_3Cl_5(tmeda)_3]^+ + Cl^- + 3tmeda$$

Further, upon attempting the synthesis of $[VI_2(tmeda)_2]$ by reaction of $VCl_2(EtOH)_2^8$ with KI and tmeda in MeOH/thf, the product we finally isolated proved to be cocrystallised $[V_3(\mu-Cl)_3(\mu_3-OMe)_2(tmeda)_3]I$ and $[V_3Cl_4(OMe)(tmeda)_3]I$, as shown by X-ray structure analysis (Fig. 2).§ Thus the V₃Cl₃ unit seems to be present in $VCl_2(EtOH)_2$ and to survive the reactions we imposed upon it. In addition, we have shown by mass spectrometry and microanalysis that the cation in the salt obtained from the reaction of **2** with depe [bis(diethylphosphino)ethane] in methanol is $[V_3(\mu-Cl)_3(\mu_3-OMe)_2(depe)_3]^+$, and the known $[VCl_2(depe)_2]^4$ is obtained with an excess of depe.

Consequently, we have persuasive evidence that the *triangulo*-{V₃Cl₃} moiety with either chloride ions or methoxide ions in the axial positions has considerable stability in V^{II} chemistry, and that it may form frequently and spontaneously. For example, careful heating of [V(MeOH)₆]Cl₂^{6.8} shows a weight loss corresponding to the formation of VCl₂(MeOH)₂, which may be formulated as [V₃Cl₅(MeOH)₆]Cl. The many reported complexes VX₂L₂ (X = halide, L = monodentate ligand) may, in fact, be trinuclear. Further, [VCl₂(tmeda)₂], on heating *in vacuo* or in a thermal gravimetric analysis (TGA) experiment under N₂, loses weight at 180 °C, corresponding to the formation of VCl₂(tmeda), and the

Fig. 2 Structure of the cation of the principal component of the co-crystals: $[V_3Cl_3(OMe)_2(tmeda)_3]I$ (occupying *ca*. 83% of the sites) and $[V_3Cl_4(OMe)(tmeda)_3]I$ ·MeOH (occupying 17% of the sites). Principal mean dimensions: V···V 3.002(4), V-Cl 2.496(7), V-O 2.136(5), V-N 2.270(11) Å; Cl-V-Cl 166.0(1), V-Cl-V 73.9(3)°. In the minor component, the methoxy group of O(5)-C(5) is replaced by a chloride ligand.

2138

residue has the appropriate C, H, and N analyses. These, again, correspond to $[V_3Cl_5(tmeda)_3]Cl$.

Gambarotta has reported that reactions of $[VCl_2(tmeda)_2]$ with NaNPh₂ and with $[VCl_3(thf)_3]$ yield $[V_3Cl_5(tmeda)_3]^+$, a cation once described⁷ as being produced in a disproportionation reaction. Our data show that this is evidently not the case, and that the trinuclear unit, rather than being the one-off product of an unusual reaction, is of general occurrence in vanadium(11) chemistry.

Finally, it should be noted that $[V_3Cl_5(tmeda)_3]I$ and $[VI_2(tmeda)_2]$, and any other similar pairs of compounds containing V_3Cl_5I or VI_2 , respectively, have the same C, H, and N contents, to the second decimal place. This is because the formula weights of $V_6Cl_{10}I_2$ {from 2[$V_3Cl_5(tmeda)_3$]I} and V_3I_6 {from 3[$VI_2(tmeda)_2$]} are equal. This coincidence emphasises the problems which can arise if too much reliance is placed upon C, H, and N analyses alone.

We acknowledge financial support from the British Council and CNPq (Brazil) to J. S. de S., and a CASE award from SERC and AFRC to C. J. McG.

Received, 6th June 1994; Com. 4/03355H

Footnotes

† On leave from Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Curitiba, PR, Brazil.

 $C_{42}H_{68}BCl_5N_6V_3$, M = 998.04, clear green, thick plate, monoclinic,

space group $P2_1/n$ (No. 14), a = 19.619(1), b = 21.566(2), c = 12.050(1) Å, $\beta = 99.25(1)^\circ$, V = 5032.3(7) Å³, Z = 4, $D_c = 1.317$ g cm⁻³, F(000) = 2084, $\mu = 8.3$ cm⁻¹, $\lambda =$ Mo-K α (mean) 0.71069 Å. § *Crystallographic data* for the co-crystals of: $[V_3Cl_3(OMe)_2-(tmeda)_3]I$ (*ca.* 83% occupancy) and $[V_3Cl_4(OMe)(tmeda)_3]I$ ·MeOH (17% occupancy). $C_{20}H_{34}Cl_3N_6O_2V_3$,I (major), $C_{19}H_{51}Cl_4N_6OV_3$,I, CH₄O (minor) M = 796.8, 833.2, Very dark, long, square prisms, orthorhombic, space group *P mnb* (equiv. to no. 62), a = 13.633(1), b = 14.454(2), c = 17.963(3) Å, V = 3539.7 Å³, Z = 4, $D_c = 1.495$ g cm⁻³, F(000) = 1632 [83% (major) + 17% (minor)], μ (Mo-K $\alpha) = 18.8$ cm⁻¹ [83% (major) + 17% (minor)], λ (Mo-K $\alpha) = 0.71069$ Å.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 G. J. Leigh, Acc. Chem. Res., 1992, 25, 177.
- 2 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, *Polyhedron*, 1989, **8**, 1823.
- 3 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, *Inorg. Chim. Acta*, 1990, **169**, 201.
- 4 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, *Inorg. Chim. Acta*, 1993, **207**, 11.
- 5 J. J. H. Edema, W. Stauthamer, F. van Bolhuis, S. Gambarotta, W. L. Smoot, and A. L. Sack, Inexa, Cham. 1900, 29, 1302
- W. J. J. Smeets and A. L. Spek, *Inorg. Chem.*, 1990, 29, 1302.
 F. A. Cotton, S. A. Duraj, L. E. Manzer and W. J. Roth, *J. Am. Chem. Soc.*, 1985, 107, 3850.
- 7 J. J. H. Edema, A. Meetsma and S. Gambarotta, J. Chem. Soc., Chem. Commun., 1990, 951; J. J. H. Edema, R. Duchateau, S. Gambarotta and C. Bensimon, Inorg. Chem., 1991, 30, 3585.
- 8 L. F. Larkworthy and M. W. O'Donoghue, *Inorg. Chim. Acta*, 1983, **71**, 81.