Trinuclear Species in Vanadium(II) Chemistry

 Gallienus W. Smith ${ }^{\text {b }}$ and Jaísa S. de Souza ${ }^{\text {at }}$

a Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK BN1 9RO
${ }^{\text {b }}$ Department of Chemistry, University of Surrey, Guildford, UK GU2 5XH
The triangulo- $\left\{\mathrm{V}_{3} \mathrm{Cl}_{3}\right\}$ unit is shown to form easily in solutions from mononuclear vanadium(II) compounds such as $\left[\mathrm{VCl}_{2} \text { (tmeda) }\right)_{2}$] and structural studies show that this unit is contained in a trigonal bipyramidal arrangement with either chloride ions or methoxide ions at the apices, as in $\left[\mathrm{V}_{3} \mathrm{Cl}_{3}\left(\mu_{3}-\mathrm{Cl}_{2}(\text { tmeda })_{3}\right]^{+},\left[\mathrm{V}_{3} \mathrm{Cl}_{3}\left(\mu_{3}-\mathrm{OMe}\right)_{2}(\text { tmeda })_{3}\right]^{+}\right.$and $\left[\mathrm{V}_{3} \mathrm{Cl}_{3}\left(\mu_{3}-\mathrm{OMe}\right)_{2}(\text { depe })_{3}\right]^{+}$.

There has been considerable interest of late in the synthesis of simple, mononuclear compounds of vanadium(il) to explore its chemistry, in particular in its reactions with dinitrogen. ${ }^{1} \mathrm{We}$ have developed ${ }^{2-4}$ simple syntheses for $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and compounds derived from it, and $\left[\mathrm{VCl}_{2}(\text { tmeda })_{2}\right]$ (tmeda $=$ tetramethylethylenediamine), first described by Gambarotta, ${ }^{5}$ has proved very useful in developing V^{H} organometallic chemistry. However, our attempts to produce vanadium(II) diiodides have been less than entirely successful, generally giving unexpected results.
For example, we found that $\left[\mathrm{VCl}_{2}(\mathrm{tmeda})_{2}\right]$, or $\left[\mathrm{V}_{2} \mathrm{Cl}_{3}(\mathrm{thf})_{6}\right]\left[\mathrm{AlCl}_{2} \mathrm{Et}_{2}\right]^{6}$ and tmeda, reacts with $\mathrm{Me}_{3} \mathrm{SiI}$ in boiling thf to yield a turquoise precipitate (25% yield) not of the expected $\left[\mathrm{VI}_{2}(\text { tmeda })_{2}\right.$] but of tri- μ-chloro-di-μ_{3}-chloro-tris(tetramethylethylenediaminevanadium) iodide, $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\text { tmeda })_{3}\right] \mathrm{I}, 1$ whose structure was shown by X-ray analysis. The trinuclear cation has already been characterised in other salts. ${ }^{7}$ Subsequently we showed that the blue solution of $\left.\left[\mathrm{VCl}_{2} \text { (tmeda }\right)_{2}\right]$ in thf at room temperature immediately turned turquoise upon addition of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$. On cooling this solution to $-20^{\circ} \mathrm{C}$, blue crystals of $\left[\mathrm{VCl}_{2}(\text { tmeda })_{2}\right]$ developed. Upon warming again to room temperature the crystals dissolved, giving on layering with hexane, turquoise crystals of $\left.\left[\mathrm{V}_{3} \mathrm{Cl}_{5} \text { (tmeda) }\right)_{3}\right]\left[\mathrm{BPh}_{4}\right], \mathbf{2}$, (55% yield), whose structure was characterised by X-ray analysis (Fig. 1). \ddagger This structure contains a cation identical to that in $\left.\left[\mathrm{V}_{3} \mathrm{Cl}_{5} \text { (tmeda) }\right)_{3}\right] \mathrm{I}$, but in this case the X-ray data allowed a better structure resolution.

We have also shown that turquoise $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\mathrm{tmeda})_{3}\right][\mathrm{BPh} 4]$ reacts with tmeda and chloride ion (but not with either,

Fig. 1 Structure of the cation in $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\text { tmeda })_{3}\right]\left[\mathrm{BPh}_{4}\right]$, showing the atom numbering scheme (carbon atoms are labelled with their number only). Principal mean dimensions: $\mathrm{V} \cdots \mathrm{V} 3.142(7), \mathrm{V}-\mathrm{Cl}_{\mathrm{eq}} 2.500(4)$, $\mathrm{V}-\mathrm{Cl}_{\mathrm{cap}} 2.519(6), \mathrm{V}-\mathrm{N} 2.214(2) \AA ; \mathrm{Cl}_{\mathrm{eq}}-\mathrm{V}-\mathrm{Cl}_{\mathrm{eq}} 162.1(2), \mathrm{V}-\mathrm{Cl}_{\mathrm{eq}}-\mathrm{V}$ $77.8(1)^{\circ}$.
separately) in thf to yield blue $\left[\mathrm{VCl}_{2}(\text { tmeda })_{2}\right]$. Evidently a facile equilibrium exists:

$$
3\left[\mathrm{VCl}_{2}(\text { tmeda })_{2}\right] \rightleftharpoons\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\text { tmeda })_{3}\right]^{+}+\mathrm{Cl}^{-}+3 \text { tmeda }
$$

Further, upon attempting the synthesis of $\left.\left[\mathrm{VI}_{2} \text { (tmeda) }\right)_{2}\right]$ by reaction of $\mathrm{VCl}_{2}(\mathrm{EtOH})_{2}{ }^{8}$ with KI and tmeda in $\mathrm{MeOH} /$ thf, the product we finally isolated proved to be cocrystallised $\left[\mathrm{V}_{3}(\mu-\mathrm{Cl})_{3}\left(\mu_{3}-\mathrm{OMe}\right)_{2}(\text { tmeda })_{3}\right] \mathrm{I}$ and $\left[\mathrm{V}_{3} \mathrm{Cl}_{4}(\mathrm{OMe})(\text { tmeda })_{3}\right] \mathrm{I}$, as shown by X -ray structure analysis (Fig. 2). § Thus the $\mathrm{V}_{3} \mathrm{Cl}_{3}$ unit seems to be present in $\mathrm{VCl}_{2}(\mathrm{EtOH})_{2}$ and to survive the reactions we imposed upon it. In addition, we have shown by mass spectrometry and microanalysis that the cation in the salt obtained from the reaction of 2 with depe [bis(diethylphosphi, no)ethane] in methanol is $\left[\mathrm{V}_{3}(\mu-\mathrm{Cl})_{3}\left(\mu_{3}-\mathrm{OMe}\right)_{2}(\text { depe })_{3}\right]^{+}$, and the known $\left[\mathrm{VCl}_{2}(\text { depe })_{2}\right]^{4}$ is obtained with an excess of depe.

Consequently, we have persuasive evidence that the trian-gulo- $\left\{\mathrm{V}_{3} \mathrm{Cl}_{3}\right\}$ moiety with either chloride ions or methoxide ions in the axial positions has considerable stability in VII chemistry, and that it may form frequently and spontaneously. For example, careful heating of $\left[\mathrm{V}(\mathrm{MeOH})_{6}\right] \mathrm{Cl}_{2}{ }^{6,8}$ shows a weight loss corresponding to the formation of $\mathrm{VCl}_{2}(\mathrm{MeOH})_{2}$, which may be formulated as $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\mathrm{MeOH})_{6}\right] \mathrm{Cl}$. The many reported complexes $\mathrm{VX}_{2} \mathrm{~L}_{2}(\mathrm{X}=$ halide, $\mathrm{L}=$ monodentate ligand) may, in fact, be trinuclear. Further, $\left[\mathrm{VCl}_{2}(\mathrm{tmeda})_{2}\right]$, on heating in vacuo or in a thermal gravimetric analysis (TGA) experiment under N_{2}, loses weight at $180^{\circ} \mathrm{C}$, corresponding to the formation of VCl_{2} (tmeda), and the

Fig. 2 Structure of the cation of the principal component of the co-crystals: $\left.\left[\mathrm{V}_{3} \mathrm{Cl}_{3}(\mathrm{OMe})_{2} \text { (tmeda) }\right)_{3}\right] \mathrm{I}$ (occupying $c a .83 \%$ of the sites) and $\left[\mathrm{V}_{3} \mathrm{Cl}_{4}(\mathrm{OMe})(\text { tmeda })_{3}\right] \mathrm{I} \cdot \mathrm{MeOH}$ (occupying 17% of the sites). Principal mean dimensions: $\mathrm{V} \cdots \mathrm{V} 3.002(4), \mathrm{V}-\mathrm{Cl} 2.496(7), \mathrm{V}-\mathrm{O}$ $2.136(5), \mathrm{V}-\mathrm{N} 2.270(11) \AA$; Cl-V-Cl $166.0(1), \mathrm{V}-\mathrm{Cl}-\mathrm{V} 73.9(3)^{\circ}$. In the minor component, the methoxy group of $\mathrm{O}(5)-\mathrm{C}(5)$ is replaced by a chloride ligand.
residue has the appropriate C, H, and N analyses. These, again, correspond to $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\text { tmeda })_{3}\right] \mathrm{Cl}$.
Gambarotta has reported that reactions of $\left[\mathrm{VCl}_{2}(\text { tmeda })_{2}\right]$ with NaNPh_{2} and with $\left[\mathrm{VCl}_{3}(\mathrm{thf})_{3}\right]$ yield $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\mathrm{tmeda})_{3}\right]^{+}$, a cation once described ${ }^{7}$ as being produced in a disproportionation reaction. Our data show that this is evidently not the case, and that the trinuclear unit, rather than being the one-off product of an unusual reaction, is of general occurrence in vanadium(II) chemistry.

Finally, it should be noted that $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}(\text { tmeda })_{3}\right] \mathrm{I}$ and $\left[\mathrm{VI}_{2}(\text { tmeda })_{2}\right]$, and any other similar pairs of compounds containing $\mathrm{V}_{3} \mathrm{Cl}_{5} \mathrm{I}$ or VI_{2}, respectively, have the same C, H, and N contents, to the second decimal place. This is because the formula weights of $\mathrm{V}_{6} \mathrm{Cl}_{10} \mathrm{I}_{2}$ \{from $\left.\left.2\left[\mathrm{~V}_{3} \mathrm{Cl}_{5} \text { (tmeda) }\right)_{3}\right] \mathrm{I}\right\}$ and $\mathrm{V}_{3} \mathrm{I}_{6}$ \{from $\left.3\left[\mathrm{VI}_{2}(\text { tmeda })_{2}\right]\right\}$ are equal. This coincidence emphasises the problems which can arise if too much reliance is placed upon C, H, and N analyses alone.

We acknowledge financial support from the British Council and CNPq (Brazil) to J. S. de S., and a CASE award from SERC and AFRC to C. J. McG.

Received, 6th June 1994; Com. 4/03355H

Footnotes

† On leave from Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Curitiba, PR, Brazil.
\ddagger Crystallograpic data for $\left[\mathrm{V}_{3} \mathrm{Cl}_{5}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{3}\right]\left[\mathrm{BPh}_{4}\right]$
$\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{BCl}_{5} \mathrm{~N}_{6} \mathrm{~V}_{3}, M=998.04$, clear green, thick plate, monoclinic,
space group $P 2_{1} / n$ (No. 14), $a=19.619(1), b=21.566(2), c=$ $12.050(1) \AA, \beta=99.25(1)^{\circ}, V=5032.3(7) \AA^{3}, Z=4, D_{c}=1.317 \mathrm{~g}$ $\mathrm{cm}^{-3}, F(000)=2084, \mu=8.3 \mathrm{~cm}^{-1}, \lambda=\mathrm{Mo}-\mathrm{K} \alpha$ (mean) $0.71069 \AA$. \S Crystallographic data for the co-crystals of: $\left[\mathrm{V}_{3} \mathrm{Cl}_{3}(\mathrm{OMe})_{2}-\right.$ (tmeda) ${ }_{3}$ II (ca. 83\% occupancy) and $\left[\mathrm{V}_{3} \mathrm{Cl}_{4}(\mathrm{OMe})(\text { tmeda })_{3}\right] \mathrm{I} \cdot \mathrm{MeOH}$ (17% occupancy). $\mathrm{C}_{20} \mathrm{H}_{54} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~V}_{3}$, I (major), $\mathrm{C}_{19} \mathrm{H}_{51} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{OV}_{3}$, I , $\mathrm{CH}_{4} \mathrm{O}$ (minor) $M=796.8,833.2$, Very dark, long, square prisms, orthorhombic, space group $P m n b$ (equiv. to no. 62), $a=13.633(1)$, $b=14.454(2), c=17.963(3) \AA, V=3539.7 \AA^{3}, Z=4, D_{\mathrm{c}}=1.495$ $\mathrm{g} \mathrm{cm}^{-3}, F(000)=1632[83 \%$ (major) $+17 \%$ (minor) $], \mu($ Mo-K $\alpha)=$ $18.8 \mathrm{~cm}^{-1}[83 \%$ (major) $+17 \%$ (minor) $], \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA$.
Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

1 G. J. Leigh, Acc. Chem. Res., 1992, 25, 177.
2 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, Polyhedron, 1989, 8, 1823.

3 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, Inorg. Chim. Acta, 1990, 169, 201.

4 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and G. J. Leigh, Inorg. Chim. Acta, 1993, 207, 11.

5 J. J. H. Edema, W. Stauthamer, F. van Bolhuis, S. Gambarotta, W. J. J. Smeets and A. L. Spek, Inorg. Chem., 1990, 29, 1302.

6 F. A. Cotton, S. A. Duraj, L. E. Manzer and W. J. Roth, J. Am. Chem. Soc., 1985, 107, 3850.
7 J. J. H. Edema, A. Meetsma and S. Gambarotta, J. Chem. Soc., Chem. Commun.,, 1990, 951; J. J. H. Edema, R. Duchateau, S. Gambarotta and C. Bensimon, Inorg. Chem., 1991, 30, 3585.
8 L. F. Larkworthy and M. W. O'Donoghue, Inorg. Chim. Acta, 1983, 71, 81.

