A New Method for the Preparation of Fullerene Anion Salts: Synthesis and Characterization of KC_{60} (THF)

Jian Chen, ^a Zu-En Huang, * ^a Rui-Fang Cai, ^a Qian-Fen Shao, ^b Shi-Ming Chen^b and Hong-Juan Ye^c

^a Department of Chemistry, Fudan University, Shanghai 200433, PR China

^b Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, PR China

Stoichiometric 1: 1 reaction of C_{60} with potassium mediated by 1-methylnaphthalene in THF at room temperature produces KC₆₀ (THF) in high yields; VIS-near IR, FTIR, solid-state ¹³C NMR and ESR spectra of the product are reported.

The discovery of superconductivity in alkali metal fullerides $(A_x C_{60})$ has attracted considerable experimental and theoretical interest in the electronic properties of these and other fullerene anion salts.¹ In addition, fullerene anions are important synthetic precursors in the organic and organometallic chemistry of fullerenes.

The vapour-transport technique is widely used to produce phase-pure fulleride materials, such as KC_{60} , K_3C_{60} . K_4C_{60} and K_6C_{60} .^{1*a*,2} This method, however, requires higher temperatures (200–400 °C) and longer reaction times (10–15 days). Alkali metal fullerides can also be obtained by reaction of C_{60} with alkali metal in liquid ammonia which requires lower temperature.^{1*a*,3} Direct reactions of C_{60} with alkali metals in THF have been reported.^{1*a*,4} Owing to the insolubility of both C_{60} and alkali metals, the reaction often requires higher temperature or long-time vigorous sonication. Stinchcombe *et al.* found that the addition of crown ether can overcome this problem partially, but in this case a large excess sodium were used.^{5*a*} A novel solution phase route to NaC₆₀(THF)₅ was developed very recently.^{5b}

We report here that alkali metal-naphthalene, a wellknown powerful homogeneous reducing system in synthetic chemistry, can be introduced to prepare fullerene anions in THF at room temperature in an efficient and controlled way. This has been demonstrated by the synthesis and characterization of KC_{60} (THF).

All manipulations were carried out under argon atmosphere with the rigid exclusion of air and moisture. To a suspension of C_{60} (240 mg, 0.33 mmol, >99.5% purity) in 50 ml THF were added potassium metal (13 mg, 0.33 mmol) and 1-methylnaphthalene (1–2 ml). The resulting mixture was stirred for 3 h (potassium metal and solid C_{60} disappeared completely within 2 h). After centrifugation (to remove possible trace impurities <5 mg), the black microcrystalline product was obtained by layering hexane over the dark red–purple solution. The solid was washed with hexane and dried in vacuum to produce KC_{60} (THF), (259 mg) in 94% yield. Elemental anal. KC_{60} (THF), Calcd for $C_{64}H_8OK$: C, 92.42; H. 0.96. Found: C, 85.76; H, 1.09.

Fig. 1 VIS-near IR spectrum of KC₆₀(THF) (solid sample in paraffin oil, recorded on Nicolet 800 FTIR spectrometer)

The relatively lower carbon data may arise from incomplete combustion of these high carbon content species.^{5a} According to ¹³C NMR (in [²H₈]THF) and IR spectra (KBr), the product was not contaminated by 1-methylnaphthalene and hexane.

Compared with C₆₀, KC₆₀(THF) shows intense and characteristic absorption bands in the VIS–near IR region (Fig. 1). Absorption at 1.075 μ m (9300 cm⁻¹) for KC₆₀ (THF) can be assigned to the allowed HOMO–LUMO t_{1u} \rightarrow t_{1g} transition of C₆₀^{-4b,5a,6}.

Room temperature solid-state ¹³C NMR spectrum of $KC_{60}(THF)$ are shown in Fig. 2. A single peak with δ 187 is observed at 295 K and spin-lattice relaxation time T_1 is 15.9 ms. A downfield shift for fullerides has been reported previously.^{1a,4a,5b} The narrowness of $KC_{60}(THF)$ signal (line width 16.2 ppm) suggests that C_{60}^- ion rotates rapidly at room temperature, thus averaging out the ¹³C chemical shift anisotropy (CSA). No C_{60} signal is observed in our ¹³C NMR spectrum. This indicates that disproportionation reactions such as $2 C_{60}^- \rightarrow C_{60} + C_{60}^{2-}$ or $3 C_{60}^- \rightarrow 2 C_{60} + C_{60}^{3-}$ did not occur when the product was precipitating from solution. The C_{60}^- signal is strongly temperature-dependent. The chemical shift and linewidth of C_{60}^- increases with temperature decreasing (*e.g.* T 150 K, δ 208, line width 99 ppm), (although IR spectrum (KBr) indicated the apparent existence of THF in samples, no THF signals were detected in our ¹³C NMR spectrum, which might be due to CSA).

Fig. 2 Solid state ${}^{13}CNMR$ spectra of KC₆₀(THF) (75.5 MHz, without sample spinning) [upper trace at 150 K, lower at 295 K]

e National Laboratory of Infrared Physics, Academia Sinica, Shanghai 200083, PR China

In the region 400–600 cm⁻¹ of IR spectrum (paraffin oil, Fig. 3), C_{60}^{-} exhibits two bands (575, 527 cm⁻¹) resembling that of C_{60} (577, 527 cm⁻¹), but with reversed ratio of relative intensities. This feature is in agreement with the charged-

Fig. 3 FTIR spectrum (400–600 cm⁻¹) of C_{60} [above], KC_{60} (THF) [below]

Fig. 4 ESR spectra of KC_{60} (THF) as a function of temperature. Inset is change in line width with temperature.

phonon theory presented by Rice and Choi.⁷ (An additonal band around 419 cm⁻¹, which is not due to paraffin oil, THF, hexane or 1-methynaphthalene, may be assigned to M-R mode, M=K⁺, R=THF or C_{60}^{-}).

A single, broad ESR signal (g 1.9987, $\Delta H = 34.1$ G) is observed for KC₆₀(THF) solid at 300 K (Fig. 4). The g value and temperature dependence of the signal line-width resemble those of C₆₀⁻ samples reported previously.^{1c,5b,8} According to Stinchcombe *et al.*^{5a} and our experimental results,⁹ this can be assigned to ²E state of C₆₀⁻, which originates from the splitting of ²T_{1u} state induced by Jahn–Teller distortion.

We thank National Natural Science Foundation of China for financial support of this work. We are also indebted to Dr Hai-Ying Liu for his generous help.

Received, 5th April 1994; Com. 4/02029D

References

- (a) D. W. Murphy, M. J. Rosseinsky, R. M. Fleming, R. Tycko, A. P. Ramirez, R. C. Haddon, T. Siegrist, G. Dabbagh, J. C. Tully and R. E. Walstedt, J. Phys. Chem. Solids, 1992, 53, 1321;
 (b) F. Wudl and J. D. Thompson, J. Phys. Chem. Solids, 1992, 53, 1449;
 (c) H. Moriyama, H. Kobayshi, A. Kobayashi and T. Watanabe, J. Am. Chem. Soc., 1993, 115, 1185;
 (d) C. Bossard, S. Rigaut, D. Astruc, M.-H. Delville, G. Felix, A. Fevrier-Bouvier, J. Amiell, S. Flandrois and P. Delhaes, J. Chem. Soc., Chem. Commun., 1993, 333.
- 2 (a) D. M. Poirer and J. H. Weaver, *Phys. Rev.*, 1993, **B47**, 10959;
 (b) Q. Zhu, O. Zhou, J. E. Pischer, A. R. McGhie, W. J. Romanow, R. M. Strongin, M. A. Cichy and A. B. Smith, III, *Phys. Rev.*, 1993, **B47**, 13948.
- 3 (a) W. K. Fullagar, I. R. Gentle, G. A. Heath and J. W. White, J. Chem. Soc., Chem. Commun., 1993, 525; (b) D. R. Buffinger, R. P. Ziebarth, U. A. Stenger, C. Recchia and C. H. Pennington, J. Am. Chem. Soc., 1993, 115, 9267.
- 4 (a) J. W. Bausch, G. K. S. Prakash, G. A. Olah, D. S. Tse, D. C. Lorents, Y. K. Bao and R. Malhotra, J. Am. Chem. Soc., 1991, 113, 3205; (b) A. J. Schell-Soroklin, F. Mehran, G. R. Eaton, S. S. Eaton, A. Viehbeck, T. R. O'Toole and C. A. Brown, Chem. Phys. Lett., 1992, 195, 225.
- 5 (a) J. Stinchcombe, A. Penicaud, P. Bhyrappa, P. D. W. Boyd and C. A. Reed, J. Am. Chem. Soc., 1993, 115, 5212; (b) R. E. Douthwaite, A. R. Brough and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1994, 267.
- 6 T. Kato, T. Kodana, T. Shida, T. Nakayawa, Y. Matsui, S. Suzuki, H. Shiromaru, K. Yamauchi and Y. Achiba, *Chem. Phys. Lett.*, 1991, **180**, 446; M. A. Greaney and S. M. Gorun, *J. Phys. Chem.*, 1991, **95**, 7142.
- 7 M. J. Rice and H. Y. Choi, Phys. Rev., 1992, B45, 10173.
- 8 P.-M. Allemand, G. Srdanov, A. Koch, K. C. Khemani, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Am. Chem. Soc., 1991, 113, 2780; D. Dubois, M. T. Jones and K. M. Kadish, J. Am. Chem. Soc., 1992, 114, 6446.
- 9 J. Chen, Q. F. Shao, Z. E. Huang, R. F. Cai and S. M. Chen, submitted for publication.