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Palladium(ii) chloride-catalysed cascade cyclisation-cycloaddition reactions of 6-alkenyl oximes occur regio- and 
facially-specifically in high yield via intermediate six-membered cyclic nitrones; preliminary studies of y-alkenyl oximes 
show they are reluctant t o  cyclise; four potential synthetic variants of the cascade process are identified and examples 
of two  of the classes are provided. 

We are developing a range of electrophile induced oxime- 
alkene' and oxime ether-alkene2 reactions that generate 
nitrones and their salts o r  iminium salts respectively (Scheme 
1) at ambient temperature in excellent yield. These processes 
occur regio- and stereo-specifically , result in incorporation of 
the synthetically valuable electrophile into the product and 
can be developed into oxime + nitrone + cycloaddition 
cascades or  other ring forming protocols furnishing a wide 
range of nitrogen heterocycles.1.2 

Our interest in developing new palladium-catalysed reac- 
tions directed our attention to palladium(i1) salts as potential 
electrophiles for Scheme 1. Palladium(I1) species are known to 
promote a range of inter- and intra-molecular additions of 
nucleophiles to alkenes.3 Palladium(~~)-induced reactions of 
certain oximes and oxime 0-ally1 ethers have also been 
reported. Thus the Shaw reaction4 involves insertion of 
palladium into an unactivated oxime fi C-H bond 1 + 2 and is 
driven by steric compression (Scheme 2). This is a potentially 
valuable synthetic method5 but is stoichiometric in palladium 
as is the briefly reported cyclisation of several a,P-unsaturated 
ketoximes to isoxazoles .6 We have developed a PdII-catalysed 
cascade rearrangement-cycloaddition reaction of oxime 
0-ally1 ethers 3 which procedes via the N-ally1 nitrone 4 
(Scheme 3).7 Thus PdII chemistry is compatible with oxime 
functionality. 
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Initial studies showed that both alkenyl aldoximes and 
alkenyl ketoximes undergo the desired Pd"-catalysed cyclisa- 
tion. The cyclisation reaction can be conducted in either 
boiling THF or  benzene. The latter, higher boiling solvent, 
results in a faster reaction. Thus aldoxime 5 (Scheme 4) 
undergoes a cyclisation-cycloaddition cascade in boiling THF 
with 6 in the presence of 10 mol% PdCI2 or  10 mol% 
[PdC12(MeCN)2]. The intermediate nitrone 7 undergoes 
facially specific cycloaddition to N-methylmaleamide (NMM) 
6 to give 8 (81%) as a 10 : 1 mixture of exo- and endo-isomers.? 
Ketoxime 9 undergoes an analogous reaction {C6Hh, 80 "C, 
7 h; 10 mol% [PdCI2(MeCN),]) to give 10 (85%) as a 2 :  1 
mixture of exo- and endo-isomers (Scheme 5 ) .  

There are potentially four synthetic variants of the Pd"- 
catalysed oxime + nitrone -+ cycloaddition cascade (Table 
1).8 Cascades 5 + 8 and 9 -+ 10 are class 111 processes. 
Examples of class IV processes are provided { C6H6, 80 "C, 6 h; 
10 mol% [PdCI2(MeCN),]} by the cyclisation-cycloaddition 
cascades l l a ,  b + 13 (85%) and 13b (82%). Note that for l l b  
the cyclisation is regiospecific and involves the least substi- 
tuted alkene (Scheme 6). 

Preliminary studies of the scope of the reaction show it can 
be used to generate nitrones at a ring junction, e.g. oxime 14 
cyclises {THF, 66 "C, 4 h; 10 mol% [PdCI,(MeCN),]} to a 2 : 1 
mixture of diastereisomers of 15 in 70% yield (Scheme 7). 
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Table 1 Synthetic variants of the Pd"-catalysed oxirne-nitrone 
cycloaddition cascade 

Class Nitrone generation Cycloaddition 

I Intermolecular Intermolecular 
rr Intermolecular Intramolecular 
111 Intramolecular Intermolecular 
IV Intramolecular Intramolecular 
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Scheme 3 
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An observation of mechanistic importance is that oximes 
16a,b do not undergo Pd"-catalysed cyclisation to the corre- 
sponding nitrones whilst reaction of 16a with a stoichiometric 
amount of [PdC12(MeCN)2] leads (THF, 25 "C, 
16 h) to the isolation of a Pd" complex formulated as 17 (70%) 
(Scheme 8). This result contrasts with the facile Pd"-catalysed 
aminocyclisation of N-protected unsaturated amines to form 
five-membered nitrogen heterocycles. Analogous cyclisations 
of this type of substrate to form six-membered rings are 
comparatively rare.9 Another feature of mechanistic interest 
is that no products arising from the 6-alkenyl oximes by a 
cyclisation-(3-hydride elimination sequence were detected. A 
possible reason for lack of (3-hydride elimination is that species 
such as 19, in which (3-hydride elimination is geometrically 
impossible, play an important role in the catalytic cycle. 
Protolysis of the Pd-C bond in 19 would then generate 
product. The nitrone products from the Pd"-catalysed cyclisa- 
tions are analogous to those derived from alkenyl oximes by 
thermal 1,3-azaprotio cyclotransfer (18, arrows), a concerted 
2n + 2n + 20 process.10 Appropriate experiments showed that 
the reactions described above do not occur to any significant 
extent in the absence of PdC12 or by substituting either HCl or 
Pd(OAc)2 for P d Q .  
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Further studies on the relationship between these latter two 
reactions and related processes are underway. 
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Footnote 
j- The stereochemistry of all products is assigned on the basis of NOE 
data. All new compounds gave satisfactory microanalytical and 
spectroscopic ( * H  NMR, MS) data. 
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