Zirconium-mediated Ring Opening of Cyclopropanes

Paul W. Dimmock and Richard J. Whitby"

Department of Chemistry, Southampton University, Southampton, UK SO 17 **7** *BJ*

Zirconocene η^2 -alkene and η^2 -imine complexes with adjacent cyclopropane rings undergo cyclopropane ring cleavage to afford novel η^3 -allyl, η^3 -azaallyl, and η^1 -enamine complexes.

There has been much recent interest in the cleavage of cyclopropanes, particularly vinylcyclopropanes, using transition metal reagents.¹ The rearrangement of titanocene and zirconocene complexes of cyclopropenes to titanocene vinylcarbene and zirconacyclobutene complexes respectively is the only reported example of group 4 transition metal complexes showing this type of reactivity.² The cleavage of carbonheteroatom bonds adjacent to zirconocene η^2 -alkene complexes³ and the ready equilibrium between η^2 -diene and η^4 -diene complexes of zirconium⁴ suggested that the transformation of vinylcyclopropanes to zirconacyclohexenes was reasonable. Our interest was further enhanced because although there are many examples of zircona-cyclopentanes and -pentenes known,⁵ the homologous zirconacyclohexanes/ enes are rare.6

Ligand exchange between *in situ* generated zirconocenebut-1-ene7 and 2-cyclopropyl styrene **1** gave the complex **2** presumably *via* a cyclopropyl ring opening and a subsequent hydride shift. Related hydride shifts are implicated in the formation **of** zirconocene diene complexes from non-conjugated dienes.* The complex **2** had NMR properties consistent with similar known complexes4 and gave the diene **3** on work-up with iodine. Although **3** was not the hoped-for product, its isolation confirmed that cyclopropane ring opening had occurred.

The hydride shift was blocked in the dimethylcyclopropane **4, formed as a 2.8:1 mixture of** (Z) **- and** (E) **-alkene isomers** *via* a Wittig reaction. Ligand exchange with zirconocene-but-1-ene gave initially a $\approx 2.5:1$ mixture of two new complexes identified as **6** and **7.** On heating, the major isomer was gradually converted to the minor (first-order rate constant 1.3 \times 10⁻⁴ s⁻¹ at 60 °C, <3% 6 after 12 h at 60 °C). Repeating the reaction with pure (E) -4 formed by palladium-catalysed cross coupling between (E) -2-bromostyrene and 2,2-dimethylcyclopropylzinc bromide gave only **7** confirming that the isomers are due to (E) - and (Z) -configuration across the 4,5-C-C bond. The selective formation of the (E) -3,4-allyl system follows from the preference for conformation **A** over **B** in the ring cleavage.? The interconversion between **6** and **7** is most likely to take place *via* the zirconacyclohexene **11** which demonstrates that the latter is not a thermodynamically stable form.

Scheme 1 *Reagent and conditions:* i , Cp_2ZrCl_2 + 2 BuLi, THF, -50 °C, 30 min; ii, add vinylcyclopropane, -50 °C to room temp., 2 h, THF; iii, 1.2 equiv. I_2 , 0 °C, 1 h; iv, 5 equiv. Me₂CO, 60 °C, 5 h; v, MeOH, room temp., 1 h

NMR assignments for **6** and **7** followed from H-H and C-H **COSY** experiments (Table 1). The (E,E)-stereochemistry of the ally1 complex **7** follows from the H-H coupling constants. The low chemical shifts of C-1, H-1 and H-1', and the cyclopentadienyl rings compared to most zirconacycles are due to the uncommon 18 electron configuration of the metal (zirconium complexes generally adopt a 16 electron configuration). Representation as vinyl zirconacyclobutanes **10/12** is not consistent with the low chemical shifts of *C-5/H-5* (Table 1).

Quenching the reaction with methanol gave only the (E)-alkene **8** irrespective of the composition of the starting mixture of **6** and **7.** Reaction with acetone followed by aqueous work-up gave the alcohol **9** in good yield. In both cases the reactions are best considered as occurring *via* the q1-bound forms **10** or **12,** the oxygenation of methanol or the ketone coordinating to the metal and the proton or ketone addition occurring *via* a six-membered transition state with allylic rearrangement. Complexes **6** and **7** comprise a novel type of zirconacycle although homologues are known **.9,4c** 1,2-Unsaturated analogues **of** *6* and **7** have been formed by rearrangement of zirconabicyclo[3.1 .O]hexenes. **10**

In an attempt to form azazirconacyclohexenes by cyclo-

Fig. 1 View along what will become the 3,4-bond. $X = \text{CHPh}$ or NPh.

Table 1 NMRa assignments for complexes **6, 7, 15, 16** and **21**

δH	6	7	15	16	21
Cp	5.322	5.363	5.684	5.89	5.78
Cp'	5.108	5.086	5.359		
H-1	-0.706	-0.744	-0.252	1.01	0.99
$H-1'$	-0.884	-0.781	-0.470		
$H-2/Me-2$	1.12	1.11	1.356	1.37	2.98
$H-2'/Me-2'$	1.44	1.43	1.200		
$H-3$	4.21	3.270	3.802	4.93	4.87
$H-4$	to	4.974	5.041	5.68	5.96
$H-5$	4.35	3.149			
$J_{1,1}$	10.4	10.2	9.5		
$J_{3,4}$		16.1	12.3	8.3	8.3
$J_{4,5}$		14.3			
$\delta_{\rm C}$					
Cp	105.58	105.59	107.83	110.54	110.4
Cp'	107.22	105.82	106.24		
$C-1$	-11.37	-12.55	-4.51	33.49	28.4
$C-2$	34.88	33.89	34.73	37.15	33.6
$Me-2$	26.95	25.27	36.40	35.08	
$Me-2'$	37.02	37.83	24.56		
$C-3$	62.76	62.64	84.49	128.11	113.1
$C-4$	101.36	101.47	105.82	134.11	137.6
$C-7$	89.98	78.33			

*^a***All** spectra were recorded on a 300 MHz (proton) Bruker spectrometer in C_6D_6 and referenced with respect to an external standard (proton) or solvent peak (carbon). $J_{H,H}$ values are in Hz.

14 and **20** were required as intermediates. The cleanest route proved to be *via* a C-H activation from the corresponding amines.11-13 Deprotonation of **N-(2,2-dimethylcyclopropyl**methy1)aniline with butyllithium followed by addition to zirconocene-methyl chloride gave the methyl zirconocene amide **13.** On standing at room temperature this underwent slow conversion to a new compound identified as the (E) -azaallyl¹³ complex 15.^{$+$} The presumed intermediate q2-imine complex **14** was not observed showing that the rate of cyclopropane ring opening was much faster than the (3-hydrogen activation. Even at room temperature small amounts of a second complex **16** were observed to be formed before complete consumption of **13.** Heating at *60* "C for 2 h completed the β -hydrogen activation of 13 and isomerised 15 to the azazirconacyclohexene form 16 (ca. 95% pure) (first order rate constant $\approx 8 \times 10^{-4}$ s⁻¹ at 60 °C). The change in coupling constant between **H-3** and H-4 from 12.3 to **8.3 Hz** is consistent with isomerisation about the **3-4** bond in the transformation of **15** to **16.** The large change in the chemical shifts of C-3 and C-4, and their attached protons, is indicative of the change from η^3 -azaallyl to η^1 -enamine coordination. The dramatic change in the chemical shift of the remote carbon C-1 **(+38** ppm) on the isomerisation of **15** to **16** is notable and reflects the change from an **18** to a 16 electron configuration at the metal. Most, if not all, of **16** is formed *via* **15.** For example, after 6 h at room temperature the reaction contained a 20 : 20 : 1 mixture of **13,15** and **16.** Methanolysis of **16** gave initially the cis-enamine **17,\$** further aqueous hydrolysis giving the known aldehyde **18.**

The methyl zirconocene amide **19** formed from cyclopropylmethylaniline slowly gave the azazirconacyclohexene **21** at room temperature, no intermediates being observed by NMR spectrosccpy. Heating at 50 "C for **2** h gave clean conversion to **21** (>go% pure) It is notable that **21** does not isomerise to the azadiene complex14 analogous to **2.** It is likely that the failure to observe an intermediate azaallyl complex analogous to **15** is due to a faster rate of isomerisation to the η^1 -bound form.

We have shown that cyclopropane rings are rapidly cleaved by adjacent zirconocene η^2 -alkene or η^2 -imine moieties to give initially (E) -allyl or -azaallyl complexes. In the former case these are the thermodynamically stable form, but in the later facile isomerisation to (Z) -azazirconacyclohexenes occurs.

Scheme 2 Reagent and conditions: i, BuLi, THF, -10 °C, 10 min; ii, add to Cp₂ZrMeCl at -50 °C; iii, room temp. -60 °C, THF or benzene; iv, MeOH; v, $H₂O$

Financial support from SERC (postdoctoral award to P. W. D.), Pfizer Central Research (UK) and Zeneca is gratefully acknowledged.

Received, 13th June 1994; Corn. 4103565H

Foot notes

[†] The high selectivity for both (E) -3,4-bond geometry and insertion into the C-CH2 cyclopropyl bond in the formation of 6 and **7** is surprising. The initial η^2 -alkene complex 5 may be formed as a mixture of diastereoisomers (ignoring the phenyl stereochemistry) , one of which should give either (E) -3,4-bond geometry and insertion into the C-CMe₂ cyclopropyl bond, or (Z) -3,4-bond geometry and insertion into the C-CH2 bond. The non-observance of these products could be due to any one of several factors including: selective formation of one diastereoisomer of *5;* interconversion of the two diastereoisomers of *5* with selective ring cleavage in one form; a non-concerted ring opening, probably *via* a diradical, which would allow an anti-ring cleavage in *5;* or rapid isomerisation of any (Z) -3,4-allyl complex formed to the (E) -isomer. The same comments apply to the formation of 15 but here the initial formation and isomerisation of the (Z) -3,4-isomer can be ruled out since 16 is the more stable form.

 6.58 (2H, d, J 7.8 Hz), 6.20 (1H, dd, J 11.6, 9.5 Hz, PhNHCHCHBu^t), 5.69 (lH, br d, *J* 11.6 Hz, NH), 4.39 (lH, d, *J* 9.5 Hz, (d), 124.17 (d, PhNHCHCHBu'), 119.46 (d), 114.45 (d, PhNHCHCHBu^t), 113.63 (d), 31.01 (q), missing-CMe₃ probably obscured by the δ 31.01 signal. \ddagger 17: δ_H (300 MHz, C_6D_6) 7.17 (2H, t, J 7.8 Hz), 6.84 (1H, t, J 7.8 Hz), PhNHCHCHBu^t), 1.20 (9H, s); δ_C (90 MHz, C_6D_6) 143.95 (s), 129.67

References

- 1 H. N. C. Wong, M. Y. Hon, **Y.** C. Yip, J. Tanko and T. Hudlicky, *Chem. Rev.,* 1989,89,165; T. Hudlicky, T. M. Kutchan and **S.** M. Naqvi, *Org. Reactions,* 1985. 33, 248; **Z.** Goldschmidt and B. Crammer, *Chem. SOC. Rev.,* 1988, 17,229.
- 2 **P.** Binger, P. Muller, R. Benn and **R.** Mynott, *Angew. Chem., Int. Ed.* Engl., 1989,28,610; **P.** Binger, P. Muller, A. **T.** Herrmann, P. Philipps, B. Gabor, F. Langha-iser and C. Kruger, *Chem. Ber.,* 1991,124,216s; P. Binger, **F.** Langhauser, B. Gabor, R. Mynott, A. T. Herrmann and C. Kruger, J. *Chem. SOC., Chem. Commun.,* 1992, 505.
- **3** H. Ito, T. Taguchi and **Y.** Hanzawa, *Tetrahedron Lett.,* 1992,33, 1295.
- 4 *(a)* G. Erker, C. Kruger and G. Muller, *Adv. Organornet. Chem.,* 1985,24, 1; *(b)* H. Yasuda, K. Nagasuna, M. Akita, K. Lee and A. Nakamura, *Organometaffics,* 1984, 3, 1470; *(c)* H. Yasuda, T. Okamoto, K. Mashima and A. Nakamura, J. *Organomet. Chem.,* 1989, 363, 61.
- *5* E. I. Negishi, in *Comprehensive Organic Synthesis,* ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. *5,* p. 1163; R. D. Broene and **S.** L. Buchwald, *Science,* 1993, 261, 1696.
- 6 The only examples we are aware of are ref. 7 and various iminoacyl complexes arising from insertion of isocyanides into zirconacyclopentanes and -pentenes: J. M. Davis, R. J. Whitby and A. Jaxa-Chamiec, *Tetrahedron Lett.,* 1992, 33, 5655; K. Aoyagi, K. Kasai, D. **Y.** Kondakov, R. Hara, N. Suzuki and T. Takahashi, *Inorg. Chim. Acta,* 1994,220, 319.
- 7 **E.** I. Negishi, F. **E.** Cederbaum and T. Takahashi, *Tetrahedron Lett.,* 1986, **27,** 2829.
- **8** J. P. Maye and E. Negishi, *Tetrahedron Lett.,* 1993, 34, 3359.
- 9 T. Luker and R. J. Whitby, *Tetrahedron Lett.,* 1994,35, 785; *G.* Erker, K. Engel, U. Dorf, J. L. Atwood and W. E. Hunter, *Angew. Chem. Suppl..* 1982, 1974.
- 10 P. Binger, **P.** Muller, F. Langhauser, F. Sandmeyer, B. Gabor, R. Mynott and **A.** T. Herrmann. *Chem. Ber.,* 1993, 126, 1541.
- 11 **S.** L. Buchwald, B. **T.** Watson, M. W. Wannamaker and J. C. Dewan, *J. Am. Chem. SOC.,* 1989, 111,4486.
- 12 N. Coles, R. J. Whitby and J. Blagg, *Synlett,* 1990,271; 1992,143. 13 N. Coles, M. C. **J.** Harris, R. **J.** Whitby and J. Blagg, *Organometallics,* 1994, 13, 190.
- 14 **J.** M. Davis, R. J. Whitby and A. Jaxa-Chamiec, J. *Chem. SOC., Chem. Commun.,* 1991, 1743.