Zirconium-mediated Ring Opening of Cyclopropanes

Paul W. Dimmock and Richard J. Whitby*

Department of Chemistry, Southampton University, Southampton, UK SO17 1BJ

Zirconocene η^2 -alkene and η^2 -imine complexes with adjacent cyclopropane rings undergo cyclopropane ring cleavage to afford novel η^3 -allyl, η^3 -azaallyl, and η^1 -enamine complexes.

There has been much recent interest in the cleavage of cyclopropanes, particularly vinylcyclopropanes, using transition metal reagents.¹ The rearrangement of titanocene and zirconocene complexes of cyclopropenes to titanocene vinyl-carbene and zirconacyclobutene complexes respectively is the only reported example of group 4 transition metal complexes showing this type of reactivity.² The cleavage of carbon-heteroatom bonds adjacent to zirconocene η^2 -alkene complexes³ and the ready equilibrium between η^2 -diene and η^4 -diene complexes of zirconium⁴ suggested that the transformation of vinylcyclopropanes to zirconacyclohexenes was reasonable. Our interest was further enhanced because although there are many examples of zirconacyclohexanes/enes and -pentenes known,⁵ the homologous zirconacyclohexanes/enes are rare.⁶

Ligand exchange between *in situ* generated zirconocenebut-1-ene⁷ and 2-cyclopropyl styrene 1 gave the complex 2 presumably *via* a cyclopropyl ring opening and a subsequent hydride shift. Related hydride shifts are implicated in the formation of zirconocene diene complexes from non-conjugated dienes.⁸ The complex 2 had NMR properties consistent with similar known complexes⁴ and gave the diene 3 on work-up with iodine. Although 3 was not the hoped-for product, its isolation confirmed that cyclopropane ring opening had occurred.

The hydride shift was blocked in the dimethylcyclopropane 4, formed as a 2.8:1 mixture of (Z)- and (E)-alkene isomers via a Wittig reaction. Ligand exchange with zirconocene-but-1-ene gave initially a $\approx 2.5:1$ mixture of two new complexes identified as 6 and 7. On heating, the major isomer was gradually converted to the minor (first-order rate constant 1.3 $\times 10^{-4} \,\mathrm{s}^{-1}$ at 60 °C, <3% 6 after 12 h at 60 °C). Repeating the reaction with pure (E)-4 formed by palladium-catalysed cross coupling between (E)-2-bromostyrene and 2,2-dimethylcyclopropylzinc bromide gave only 7 confirming that the isomers are due to (E)- and (Z)-configuration across the 4,5-C-C bond. The selective formation of the (E)-3,4-allyl system follows from the preference for conformation A over B in the ring cleavage.[†] The interconversion between 6 and 7 is most likely to take place via the zirconacyclohexene 11 which demonstrates that the latter is not a thermodynamically stable form.

Scheme 1 Reagent and conditions: i, $Cp_2ZrCl_2 + 2$ BuLi, THF, -50 °C, 30 min; ii, add vinylcyclopropane, -50 °C to room temp., 2 h, THF; iii, 1.2 equiv. I_2 , 0 °C, 1 h; iv, 5 equiv. Me₂CO, 60 °C, 5 h; v, MeOH, room temp., 1 h

NMR assignments for 6 and 7 followed from H–H and C–H COSY experiments (Table 1). The (E,E)-stereochemistry of the allyl complex 7 follows from the H–H coupling constants. The low chemical shifts of C-1, H-1 and H-1', and the cyclopentadienyl rings compared to most zirconacycles are due to the uncommon 18 electron configuration of the metal (zirconium complexes generally adopt a 16 electron configuration). Representation as vinyl zirconacyclobutanes 10/12 is not consistent with the low chemical shifts of C-5/H-5 (Table 1).

Quenching the reaction with methanol gave only the (E)-alkene 8 irrespective of the composition of the starting mixture of 6 and 7. Reaction with acetone followed by aqueous work-up gave the alcohol 9 in good yield. In both cases the reactions are best considered as occurring via the η^{1} -bound forms 10 or 12, the oxygenation of methanol or the ketone coordinating to the metal and the proton or ketone addition occurring via a six-membered transition state with allylic rearrangement. Complexes 6 and 7 comprise a novel type of zirconacycle although homologues are known.^{9,4c} 1,2-Unsaturated analogues of 6 and 7 have been formed by rearrangement of zirconabicyclo[3.1.0]hexenes.¹⁰

In an attempt to form azazirconacyclohexenes by cyclopropane ring cleavage the zirconocene η^2 -imine complexes

Fig. 1 View along what will become the 3,4-bond. X = CHPh or NPh.

Table 1 NMR^a assignments for complexes 6, 7, 15, 16 and 21

δ_{H}	6	7	15	16	21
Ср	5.322	5.363	5.684	5.89	5.78
Cp′	5.108	5.086	5.359		
H-1	-0.706	-0.744	-0.252	1.01	0.99
H-1′	-0.884	-0.781	-0.470		
H-2/Me-2	1.12	1.11	1.356	1.37	2.98
H-2'/Me-2'	1.44	1.43	1.200		
H-3	{4.21	3.270	3.802	4.93	4.87
H-4	{ to	4.974	5.041	5.68	5.96
H-5	4.35	3.149			
$J_{1,1}$	Ì0.4	10.2	9.5		
$J_{3.4}$		16.1	12.3	8.3	8.3
$J_{4,5}$		14.3			
$\delta_{\rm C}$					
Ср	105.58	105.59	107.83	110.54	110.4
Cp'	107.22	105.82	106.24		
C-1	-11.37	-12.55	-4.51	33.49	28.4
C-2	34.88	33.89	34.73	37.15	33.6
Me-2	26.95	25.27	36.40	35.08	
Me-2'	37.02	37.83	24.56		
C-3	62.76	62.64	84.49	128.11	113.1
C-4	101.36	101.47	105.82	134.11	137.6
C-7	89.98	78.33			

^{*a*} All spectra were recorded on a 300 MHz (proton) Bruker spectrometer in C_6D_6 and referenced with respect to an external standard (proton) or solvent peak (carbon). $J_{H,H}$ values are in Hz.

14 and 20 were required as intermediates. The cleanest route proved to be via a C-H activation from the corresponding amines.¹¹⁻¹³ Deprotonation of N-(2,2-dimethylcyclopropylmethyl)aniline with butyllithium followed by addition to zirconocene-methyl chloride gave the methyl zirconocene amide 13. On standing at room temperature this underwent slow conversion to a new compound identified as the (E)-azaally 1^{13} complex 15.[†] The presumed intermediate η^2 -imine complex 14 was not observed showing that the rate of cyclopropane ring opening was much faster than the β -hydrogen activation. Even at room temperature small amounts of a second complex 16 were observed to be formed before complete consumption of 13. Heating at 60 °C for 2 h completed the β -hydrogen activation of 13 and isomerised 15 to the azazirconacyclohexene form 16 (ca. 95% pure) (first order rate constant $\approx 8 \times 10^{-4} \text{ s}^{-1}$ at 60 °C). The change in coupling constant between H-3 and H-4 from 12.3 to 8.3 Hz is consistent with isomerisation about the 3-4 bond in the transformation of 15 to 16. The large change in the chemical shifts of C-3 and C-4, and their attached protons, is indicative of the change from η^3 -azaallyl to η^1 -enamine coordination. The dramatic change in the chemical shift of the remote carbon C-1 (+38 ppm) on the isomerisation of 15 to 16 is notable and reflects the change from an 18 to a 16 electron configuration at the metal. Most, if not all, of 16 is formed via 15. For example, after 6 h at room temperature the reaction contained a 20: 20: 1 mixture of 13, 15 and 16. Methanolysis of 16 gave initially the cis-enamine 17,‡ further aqueous hydrolysis giving the known aldehyde 18.

The methyl zirconocene amide **19** formed from cyclopropylmethylaniline slowly gave the azazirconacyclohexene **21** at room temperature, no intermediates being observed by NMR spectrosccpy. Heating at 50 °C for 2 h gave clean conversion to **21** (>90% pure) It is notable that **21** does not isomerise to the azadiene complex¹⁴ analogous to **2**. It is likely that the failure to observe an intermediate azaallyl complex analogous to **15** is due to a faster rate of isomerisation to the η^1 -bound form.

We have shown that cyclopropane rings are rapidly cleaved by adjacent zirconocene η^2 -alkene or η^2 -imine moieties to give initially (*E*)-allyl or -azaallyl complexes. In the former case these are the thermodynamically stable form, but in the later facile isomerisation to (*Z*)-azazirconacyclohexenes occurs.

Scheme 2 Reagent and conditions: i, BuLi, THF, -10 °C, 10 min; ii, add to Cp₂ZrMeCl at -50 °C; iii, room temp. -60 °C, THF or benzene; iv, MeOH; v, H₂O

Financial support from SERC (postdoctoral award to P. W. D.), Pfizer Central Research (UK) and Zeneca is gratefully acknowledged.

Received, 13th June 1994; Com. 4/03565H

Footnotes

 \dagger The high selectivity for both (E)-3,4-bond geometry and insertion into the C-CH₂ cyclopropyl bond in the formation of 6 and 7 is surprising. The initial η^2 -alkene complex 5 may be formed as a mixture of diastereoisomers (ignoring the phenyl stereochemistry), one of which should give either (E)-3,4-bond geometry and insertion into the C-CMe₂ cyclopropyl bond, or (Z)-3,4-bond geometry and insertion into the C-CH₂ bond. The non-observance of these products could be due to any one of several factors including: selective formation of one diastereoisomer of 5; interconversion of the two diastereoisomers of 5 with selective ring cleavage in one form; a non-concerted ring opening, probably via a diradical, which would allow an anti-ring cleavage in 5; or rapid isomerisation of any (Z)-3,4-allyl complex formed to the (E)-isomer. The same comments apply to the formation of 15 but here the initial formation and isomerisation of the (Z)-3,4-isomer can be ruled out since 16 is the more stable form.

‡ **17**: $\delta_{\rm H}$ (300 MHz, C₆D₆) 7.17 (2H, t, J7.8 Hz), 6.84 (1H, t, J7.8 Hz), 6.58 (2H, d, J7.8 Hz), 6.20 (1H, dd, J11.6, 9.5 Hz, PhNHCHCHBu^t), 5.69 (1H, br d, J 11.6 Hz, NH), 4.39 (1H, d, J 9.5 Hz, PhNHCHCHBu^t), 1.20 (9H, s); $\delta_{\rm C}$ (90 MHz, C₆D₆) 143.95 (s), 129.67 (d), 124.17 (d, PhNHCHCHBu^t), 119.46 (d), 114.45 (d, PhNHCHCHBu^t), 113.63 (d), 31.01 (q), missing–CMe₃ probably obscured by the δ 31.01 signal.

References

- H. N. C. Wong, M. Y. Hon, Y. C. Yip, J. Tanko and T. Hudlicky, *Chem. Rev.*, 1989, **89**, 165; T. Hudlicky, T. M. Kutchan and S. M. Naqvi, *Org. Reactions*, 1985, **33**, 248; Z. Goldschmidt and B. Crammer, *Chem. Soc. Rev.*, 1988, **17**, 229.
- P. Binger, P. Müller, R. Benn and R. Mynott, Angew. Chem., Int. Ed. Engl., 1989, 28, 610; P. Binger, P. Müller, A. T. Herrmann, P. Philipps, B. Gabor, F. Langhauser and C. Krüger, Chem. Ber., 1991, 124, 2165; P. Binger, F. Langhauser, B. Gabor, R. Mynott, A. T. Herrmann and C. Krüger, J. Chem. Soc., Chem. Commun., 1992, 505.
- 3 H. Ito, T. Taguchi and Y. Hanzawa, Tetrahedron Lett., 1992, 33, 1295.
- 4 (a) G. Erker, C. Kruger and G. Muller, Adv. Organomet. Chem., 1985, 24, 1; (b) H. Yasuda, K. Nagasuna, M. Akita, K. Lee and A. Nakamura, Organometallics, 1984, 3, 1470; (c) H. Yasuda, T. Okamoto, K. Mashima and A. Nakamura, J. Organomet. Chem., 1989, 363, 61.
- 5 E. I. Negishi, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 5, p. 1163; R. D. Broene and S. L. Buchwald, *Science*, 1993, **261**, 1696.
- 6 The only examples we are aware of are ref. 7 and various iminoacyl complexes arising from insertion of isocyanides into zirconacyclopentanes and -pentenes: J. M. Davis, R. J. Whitby and A. Jaxa-Chamiec, *Tetrahedron Lett.*, 1992, 33, 5655; K. Aoyagi, K. Kasai, D. Y. Kondakov, R. Hara, N. Suzuki and T. Takahashi, *Inorg. Chim. Acta*, 1994, 220, 319.
- 7 E. I. Negishi, F. E. Cederbaum and T. Takahashi, *Tetrahedron Lett.*, 1986, 27, 2829.
- 8 J. P. Maye and E. Negishi, Tetrahedron Lett., 1993, 34, 3359.
- 9 T. Luker and R. J. Whitby, *Tetrahedron Lett.*, 1994, **35**, 785; G. Erker, K. Engel, U. Dorf, J. L. Atwood and W. E. Hunter, *Angew. Chem. Suppl.*, 1982, 1974.
- 10 P. Binger, P. Müller, F. Langhauser, F. Sandmeyer, B. Gabor, R. Mynott and A. T. Herrmann, *Chem. Ber.*, 1993, **126**, 1541.
- 11 S. L. Buchwald, B. T. Watson, M. W. Wannamaker and J. C. Dewan, J. Am. Chem. Soc., 1989, 111, 4486.
- N. Coles, R. J. Whitby and J. Blagg, Synlett, 1990, 271; 1992, 143.
 N. Coles, M. C. J. Harris, R. J. Whitby and J. Blagg, Organometallics, 1994, 13, 190.
- 14 J. M. Davis, R. J. Whitby and A. Jaxa-Chamiec, J. Chem. Soc., Chem. Commun., 1991, 1743.