Catalysed Isomerization of Simple Radical Cations in the Gas Phase

Henri E. Audier,* ^a Danielle Leblanc, ^a Philippe Mourgues, ^a Terry B. McMahon^b and Steen Hammerum^c

^a Laboratoire des Mécanismes Réactionnels, URA CNRS 1307, Ecole Polytechnique, 91128 Palaiseau, France

^b Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1

^c Department of Chemistry, University of Copenhagen, The H. C. Ørsted Institute, DK-2100 Copenhagen Ø, Denmark

Interaction with polar neutral molecules can cause α -distonic radical cations and conventional molecular ions to interconvert in the gas phase, in spite of substantial energy barriers for the unassisted isomerization; the interconversion is particularly facile when the proton affinity of the neutral molecule is close to that of the deprotonated radical cation.

(1)

A substantial body of experimental and theoretical work has demonstrated that simple, isolated gas-phase α - and β -distonic radical cations and their conventional molecular ion counterparts, do not spontaneously interconvert.^{1,2} The energy barriers that separate the isomers have been found by quantum mechanical calculation to be substantial³ and a variety of methods exists to distinguish experimentally between the isomers.

We have recently observed⁴ that \cdot CH₂OH₂⁺ and CH₃OH⁺⁺ both exhange all four hydrogens at thermal energies under multiple collision conditions with D₂O in the gas phase, and it was hypothesized that interconversion of the two isomers took place *via* a process involving catalysis by the neutral water molecules. We now report further confirmatory evidence for the mechanism and, furthermore, that such catalysed interconversion appears to be a general phenomenon for α -distonic ions and their molecular ion counterparts. This experimental evidence includes results obtained with sector mass spectrometers as well as with Fourier-transform ion cyclotron resonance (FT-ICR) instruments.⁵

It is well known⁶ that the isolated CH_4O^{++} isomers do not interconvert and that they can be distinguished and characterized by their collision-induced dissociation (CID) reactions. The CID mass spectrum⁵ of CH_3OH^{++} is shown in Fig. 1(*a*). However, when the CH_3OH^{++} ions are allowed to interact with H_2O prior to analysis, such as when methanol is ionized by electron ionization (EI) in the presence of water at a relatively high pressure (chemical ionization ion source), the CID mass spectrum shown in Fig. 1(*b*) is obtained. This spectrum is characteristic of the $\cdot CH_2OH_2^+$ structure.⁷ Clearly, the interaction with H_2O has caused the molecular ions to isomerize to $\cdot CH_2OH_2^+$.

Correspondingly, the bimolecular reactions in the cell of an FT-ICR spectrometer of CH₃OH with CD₃OH⁺⁺ (formed by EI in an external ion source) result in 1:1 transfer of H⁺ and D⁺ to the neutral methanol; likewise, a 1:1 transfer of H⁺ and D⁺ is observed when CH₃OD⁺⁺ reacts with CH₃OH. These results show that, prior to proton transfer, the methanol radical cation isomerizes to the α -distonic isomer [eqn. (1)],

 $CD_3OH^{+} \rightarrow {}^{\cdot}CD_2OHD^+$

(a) (b)
$$m/z = 15$$
 $m/z = 16$ $m/z = 14$

Fig. 1 Partial CID spectra of the m/z 32 ions formed: (a) by EI of methanol; (b) by EI of a water-methanol mixture (10:1)

a process which is exothermic by 7 kcal mol⁻¹ (1 cal = 4.184 J). The isotopic specificity observed with these and related reactant pairs (*e.g.* CD₃OH⁺⁺ and CD₃OD) when multiple collisions and hydrogen exchange between the reactants have not yet taken place (pressure lower than 5×10^{-8} Torr (1 Torr = 6.66×10^{-6} Pa), time ≤ 1 s) shows that the hydrogen atoms of the neutral reactant are not involved in the proton transfer reactons. This indicates that the isomerization occurs by 1,2-H-migration in the radical cation, not by reciprocal hydrogen transfer between the reactants within the encounter complex.

The interconversion appears, nonetheless, to be influenced by the proton affinity of the neutral reaction partner, indicating that the isomerization is aided by the formation of hydrogen bonds or related interactions within the encounter complex. CH_3OH^{++} and $\cdot CH_2OH_2^+$ undergo virtually identical reactions with neutral molecules whose proton affinity is around or greater than that of $\cdot CH_2OH$ (166 kcal mol⁻¹).⁴ However, the reactions with molecules of lower proton affinity can be remarkably different, *e.g.* $\cdot CH_2OH_2^+$ is completely unreactive towards CD_4 , whereas CH_3OH^{++} efficiently abstracts D· to form CH_3OHD^+ (the location of the D on O rather than C was verified by CID).

The ethanol radical cation exhibits similar behaviour, isomerizing in the presence of neutral methanol [eqn. (2)].

$$CH_3CD_2OH^{+} \to CH_3^{+}CDOHD^{+}$$
(2)

The observation that interaction with polar molecules can cause molecular ions to isomerize into their α -distonic counterparts sheds new light on early tandem mass spectrometry experiments. Sieck et al.8 found that C2D5OH+ transfers H⁺ and D⁺ to C₂H₅OH in about a 1:1 ratio, and Meisels and coworkers⁹ observed that CD₃OH⁺⁺ transfers H⁺ as well as D^+ to acetaldehyde (ratio close to 1:1). At the time, these results were taken to show competing proton transfer from C and from O. Correspondingly, McMahon and Beauchamp¹⁰ found in ICR drift cell studies almost identical rates for H^+ and D^+ transfer from CD_3OH^{+} and $C_2D_5OH^{+}$ to the corresponding neutral molecules. The same authors observed a 2:1 ratio of H⁺ and D⁺ transfer from CD_3NH_2 ⁺ to CD_3NH_2 , and a 1:1 ratio for H⁺ and D⁺ transfer from $(CD_3)_2NH^{+}$. These results suggest that the amine molecular ions also isomerize into their α -distonic counterparts [eqns.

$$CD_3NH_2^{+} \rightarrow CD_2NH_2D^+$$
 (3)

$$(CD_3)_2 NH^{+} \rightarrow CD_2 NHDCD_3^+$$
(4)

(3) and (4)]. The isotopic specificity observed indicates that the proton-transfer step is more rapid than any re-isomerization to give back the initial molecular ion.^{11,12}

The reverse process, isomerization of $\cdot CH_2NH_3^+$ to $CH_3NH_2^{+}$, is observed in hydrogen atom abstraction reactions with $(CD_3CD_2)_2O$ [eqn. (5)].¹³ The collision-induced

$$[{}^{\cdot}CH_2NH_3^+, C_4D_{10}O] \rightarrow [CH_3NH_2^{\cdot +}, C_4D_{10}O] \rightarrow CH_3NH_2D^+$$
 (5)

dissociation of the product $CH_3NH_2D^+$ ions formed from either CH_5N^{+} reactant shows that the D is located on the nitrogen. Isomerization does not take place when the CH_5N^{+} isomers react with neutral molecules considerably less basic than \cdot CH₂NH₂ (*e.g.* CH₃NH₂·+ abstracts H· from C₃H₈ and from CH₃I, \cdot CH₂NH₃+ does not).

The reaction of D_2O with CH_3Br^{+} as well as with $\cdot CH_2BrH^+$ results in exchange of all three hydrogen atoms. It is interesting that proton transfer to water is not observed with either CH_3Br^{++} isomer, even though H^+ -transfer to H_2O should be considerably exothermic¹⁴ for $\cdot CH_2BrH^+$. This may be explained by the reversible interconversion of [$\cdot CH_2BrH^+$, H_2O], [CH_3Br^{++} , H_2O] and [$\cdot CH_2Br$, H_3O^+] ion-neutral complexes leading to the most stable final products which correspond to ($CH_3Br^{++} + H_2O$), not to ($H_3O^+ + \cdot CH_2Br$). Furthermore, both CH_3Br^{++} isomers transfer CH_3^+ to formal-dehyde confirming that $\cdot CH_2BrH^+$ can isomerize to CH_3Br^{++} .

The H/D exchange reaction is also observed for a number of related cations. It is the case for the reactions between D₂O and CH₃CH₂Br^{.+} (2 α -H exchanged), D₂O with CH₃CH₂OH^{.+} (3H exchanged), ND₃ with CH₃NHCH₃^{.+} (7H) or CH₃OD with CH₃OCH₃^{.+} (6H).

This shows that the catalysed isomerization of a molecular ion to its α -distonic isomer is a widespread phenomenon. The mechanism appears to bear strong resemblance to what Bohme¹⁵ called 'proton transport catalysis'.

Received, 23rd July 1994; Com. 4/03814B

References

 W. J. Bouma, R. H. Nobes and L. Radom, J. Am. Chem. Soc., 1982, 104, 2929; L. Radom, W. J. Bouma, R. H. Nobes and B. F. Yates, Pure Appl. Chem., 1984, 56, 1831.

- 2 S. Hammerum, Mass Spectrom. Rev., 1988, 7, 123.
- 3 B. F. Yates, W. J. Bouma and L. Radom, *Tetrahedron*, 1986, 42, 6225; N. L. Ma, B. S. Smith and L. Radom, *J. Phys. Chem.*, 1992, 96, 5804.
- 4 P. Mourgues, H. E. Audier, D. Leblanc and S. Hammerum, Org. Mass Spectrom., 1993, 28, 1098.
- 5 CID experiments were performed on a VG ZAB-2F mass spectrometer. Ion-molecule reactions were studied on a Bruker CMS 47X FT-ICR mass spectrometer equipped with an external ion-source. In the cell, ions are cooled by argon; see D. Thölmann and H. F. Grützmacher, *Chem. Phys. Lett.*, 1989, **163**, 225.
- 6 W. J. Bouma, J. K. MacLeod and L. Radom, J. Am. Chem. Soc., 1982, 104, 2930; J. L. Holmes, F. P. Lossing, J. K. Terlouw and P. C. Burgers, J. Am. Chem. Soc., 1982, 104, 2931.
- 7 The m/z 14 (CH₂⁺⁺) and the narrow m/z 16 (CH₄O²⁺) peaks are particularly significant, see ref. 6.
- 8 L. W. Sieck, F. P. Abramson and J. H. Futrell, J. Chem. Phys., 1966, 45, 2859.
- 9 L. J. Leger, G. G. Meisels and T. O. Tiernan, J. Chem. Phys., 1970, 52, 4319.
- 10 T. B. McMahon and J. L. Beauchamp, J. Phys. Chem., 1977, 81, 593.
- 11 Drewello et al.¹² observed exclusively D⁺ transfer from ·CH₂ND₃⁺ to ND₃, which they took to imply that CH₃NH₂·⁺ and ·CH₂NH₃⁺ do not interconvert; a less restrictive interpretation is that the interconversion does not compete efficiently with exothermic proton transfer.
- 12 T. Drewello, N. Heinrich, W. P. M. Maas, N. M. M. Nibbering, T. Weiske and H. Schwarz, J. Am. Chem. Soc., 1987, 109, 4810.
- 13 $^{\circ}CH_2NH_3^+$ formed in the external ion source by CO loss from acetamide. 12
- 14 $\Delta H_{\rm f}$: CH₂BrH⁺] is about 22 kcal mol⁻¹ higher than $\Delta H_{\rm f}$ [CH₃Br⁺]: L. Radom, personal communication.
- 15 D. K. Bohme, Int. J. Mass Spectrom. Ion Proc., 1992, 115, 95.