Catalysed lsomerization of Simple Radical Cations in the Gas Phase

Henri E. Audier,*^a Danielle Leblanc,^a Philippe Mourgues,^a Terry B. McMahon^b and Steen Hammerum^c

a Laboratoire des Mécanismes Réactionnels, URA CNRS 1307, Ecole Polytechnique, 91128 Palaiseau, France

b Department of Chemistry, University of Waterioo, Ontario, Canada N2L 3G1

^c*Department of Chemistry, University of Copenhagen, The H. C. 0rsted Institute, DK-2 100 Copenhagen 0, Denmark*

Interaction with polar neutral molecules can cause α -distonic radical cations and conventional molecular ions to interconvert in the gas phase, in spite of substantial energy barriers for the unassisted isomerization; the interconversion is particularly facile when the proton affinity of the neutral molecule is close to that of the deprotonated radical cation.

A substantial body of experimental and theoretical work has demonstrated that simple, isolated gas-phase α - and β -distonic radical cations and their conventional molecular ion counterparts, do not spontaneously interconvert.^{1,2} The energy barriers that separate the isomers have been found by quantum mechanical calculation to be substantial³ and a variety of methods exists to distinguish experimentally between the isomers.

We have recently observed⁴ that \cdot CH₂OH₂+ and CH₃OH \cdot + both exhange all four hydrogens at thermal energies under multiple collision conditions with D_2O in the gas phase, and it was hypothesized that interconversion of the two isomers took place *via* a process involving catalysis by the neutral water molecules. We now report further confirmatory evidence for the mechanism and, furthermore, that such catalysed interconversion appears to be a general phenomenon for α -distonic ions and their molecular ion counterparts. This experimental evidence includes results obtained with sector mass spectrometers as well as with Fourier-transform ion cyclotron resonance (FT-ICR) instruments.5

It is well known⁶ that the isolated $CH_4O⁺$ isomers do not interconvert and that they can be distinguished and characterized by their collision-induced dissociation (CID) reactions. The CID mass spectrum⁵ of $CH₃OH⁺$ is shown in Fig. 1(*a*). However, when the CH₃OH⁺⁺ ions are allowed to interact with H_2O prior to analysis, such as when methanol is ionized by electron ionization (EI) in the presence of water at a relatively high pressure (chemical ionization ion source), the CID mass spectrum shown in Fig. $1(b)$ is obtained. This spectrum is characteristic of the $\cdot \text{CH}_2\text{OH}_2$ + structure.⁷ Clearly, the interaction with H_2O has caused the molecular ions to isomerize to \cdot CH₂OH₂⁺.

Correspondingly, the bimolecular reactions in the cell of an FT-ICR spectrometer of CH₃OH with $CD₃OH⁺$ (formed by EI in an external ion source) result in $1:1$ transfer of H^+ and $D⁺$ to the neutral methanol; likewise, a 1:1 transfer of H⁺ and D^+ is observed when CH_3OD^+ reacts with CH_3OH . These results show that, prior to proton transfer, the methanol radical cation isomerizes to the α -distonic isomer [eqn. (1)],

 $CD_3OH^{+} \rightarrow \cdot CD_2OH^{+}$ (1)

(a)
\n
$$
m/z=15
$$

\n $m/z=16$
\n $m/z=16$
\n $m/z=14$

Fig. 1 Partial CID **spectra of the** *mlz* **32 ions formed:** *(a)* **by EI of** methanol; *(b)* by EI of a water-methanol mixture (10:1)

a process which is exothermic by 7 kcal mol⁻¹ (1 cal = 4.184 J). The isotopic specificity observed with these and related reactant pairs $(e.g.$ $CD_3OH⁺$ and $CD_3OD)$ when multiple collisions and hydrogen exchange between the reactants have not yet taken place (pressure lower than 5×10^{-8} Torr (1 Torr $= 6.66 \times 10^{-6}$ Pa), time ≤ 1 s) shows that the hydrogen atoms of the neutral reactant are not involved in the proton transfer reactons. This indicates that the isomerization occurs by 1,2-H-migration in the radical cation, not by reciprocal hydrogen transfer between the reactants within the encounter complex.

The interconversion appears, nonetheless, to be influenced by the proton affinity of the neutral reaction partner, indicating that the isomerization is aided by the formation of hydrogen bonds or related interactions within the encounter complex. CH₃OH⁺⁺ and \cdot CH₂OH₂⁺ undergo virtually identical reactions with neutral molecules whose proton affinity is around or greater than that of \cdot CH₂OH (166 kcal mol⁻¹).⁴ However, the reactions with molecules of lower proton affinity can be remarkably different, $e.g. \quad CH_2OH_2{}^+$ is completely unreactive towards CD_4 , whereas CH_3OH^{++} efficiently abstracts D[.] to form $CH₃OHD⁺$ (the location of the D on 0 rather than C was verified by CID).

The ethanol radical cation exhibits similar behaviour, isomerizing in the presence of neutral methanol [eqn. (2)].

$$
CH_3CD_2OH^{+} \to CH_3 \cdot CDOHD^{+}
$$
 (2)

The observation that interaction with polar molecules can cause molecular ions to isomerize into their α -distonic counterparts sheds new light on early tandem mass spectrometry experiments. Sieck *et al.8* found that C_2D_5OH ⁺⁺ transfers H^+ and D^+ to C_2H_5OH in about a 1:1 ratio, and Meisels and coworkers⁹ observed that CD_3OH^+ transfers H^+ as well as D^+ to acetaldehyde (ratio close to 1:1). At the time, these results were taken to show competing proton transfer from C and from 0. Correspondingly, McMahon and Beauchamp10 found in ICR drift cell studies almost identical rates for H^+ and D⁺ transfer from CD₃OH⁺⁺ and C₂D₅OH⁺⁺ to the corresponding neutral molecules. The same authors observed a 2:1 ratio of H⁺ and D⁺ transfer from CD_3NH_2 ⁺⁺ to CD_3NH_2 , and a 1:1 ratio for H⁺ and D⁺ transfer from $(CD_3)_2NH^{+}$. These results suggest that the amine molecular ions also isomerize into their α -distonic counterparts [eqns.

$$
CD_3NH_2^{++} \to \,^{\cdot}CD_2NH_2D^+\tag{3}
$$

$$
(CD_3)_2NH^{++}\rightarrow \text{'}CD_2NHDCD_3^+\qquad \qquad (4)
$$

(3) and **(4)].** The isotopic specificity observed indicates that the proton-transfer step is more rapid than any re-isomerization to give back the initial molecular ion. $11,12$

The reverse process, isomerization of CH_2NH_3 ⁺ to $CH₃NH₂$ ⁺, is observed in hydrogen atom abstraction reactions with $(CD_3CD_2)_2O$ [eqn. (5)].¹³ The collision-induced

$$
[CH_2NH_3^+, C_4D_{10}O] \to [CH_3NH_2^{+,} C_4D_{10}O] \to CH_3NH_2^{-,}
$$
 (5)

dissociation of the product $CH_3NH_2D^+$ ions formed from either $CH₅N⁺$ reactant shows that the D is located on the nitrogen. Isomerization does not take place when the CH_5N^{++}

isomers react with neutral molecules considerably less basic than \cdot CH₂NH₂ (e.g. CH₃NH₂⁺⁺ abstracts H \cdot from C₃H₈ and from CH_3I , CH_2NH_3 ⁺ does not).

The reaction of D_2O with CH_3Br^+ as well as with \cdot CH₂BrH⁺ results in exchange of all three hydrogen atoms. It is interesting that proton transfer to water is not observed with either CH₃Br⁺ isomer, even though H⁺-transfer to H₂O should be considerably exothermic¹⁴ for \cdot CH₂BrH+. This may be explained by the reversible interconversion of $[CH_2BrH^+,$ H_2O , $[CH_3Br^+$, $H_2O]$ and $[CH_2Br, H_3O^+]$ ion-neutral complexes leading to the most stable final products which correspond to $(\tilde{CH}_3Br^+ + H_2O)$, not to $(H_3O^+ + H_2Br)$. Furthermore, both CH_3Br^+ isomers transfer CH_3^+ to formaldehyde confirming that \cdot CH₂BrH⁺ can isomerize to CH₃Br \cdot +.

The H/D exchange reaction is also observed for a number of related cations. It is the case for the reactions between D_2O
and $CH_3CH_2Br^+$ (2 α -H exchanged), D_2O with and $CH_3CH_2Br^+$ (2 α -H exchanged), D₂O with CH3CH20H-+ **(3H** exchanged), **ND3** with CH3NHCH3++ (7H) or $CH₃OD$ with $CH₃OCH₃(+ (6H)).$

This shows that the catalysed isomerization of a molecular ion to its α -distonic isomer is a widespread phenomenon. The mechanism appears to bear strong resemblance to what Bohme15 called 'proton transport catalysis'.

Received, 23rd July 1994; Corn. 410381 4B

References

1 W. **J.** Bouma, R. **H.** Nobes and *L.* Radom, *J. Am. Chem. Soc.,* 1982,104,2929; L. Radom, W. **J.** Bouma, R. H. Nobes and B. *F.* Yates, *Pure Appl. Chem.,* 1984, 56, 1831.

- 2 *S.* Hammerum, *Mass Specrrom. Rev.,* 1988. *7,* 123.
- 3 B. F. Yates, W. **J.** Bouma and L. Radom, *Tetrahedron,* 1986,42, 6225; *N.* L. Ma, B. **S.** Smith and L. Radom, J. *Phys. Chem.,* 1992, 96. 5804.
- 4 **P.** Mourgues, H. E. Audier. D. Leblanc and **S.** Hammerum, *Urg. Mass Specrrom.,* 1993, *28,* 1098.
- *5* CID experiments were performed on a VG **ZAB-2F** mass spectrometer. Ion-molecule reactions were studied on a Bruker CMS 47X FT-ICR mass spectrometer equipped with an external ion-source. In the cell, ions are cooled by argon; see D. Tholmann and H. F. Griitzmacher, *Chem. Phys. Lett.,* 1989, 163, 225.
- 6 **W. J.** Bouma, **J.** K. MacLeod and L. Radom. *J. Am. Chem. SOC..* 1982, *104,* 2930; J. **L.** Holmes, **F. P.** Lossing, **J. K.** Terlouw and P. C. Burgers, J. *Am. Chem. Soc.,* 1982, 104, 2931.
- 7 The m/z 14 (CH₂⁺⁺) and the narrow m/z 16 (CH₄O²⁺) peaks are particularly significant, see ref. 6.
- 8 L. W. Sieck, F. P. Abramson and **J.** H. Futrell, J. *Chem. Phys.,* 1966, **45,** 2859.
- 9 L. J. Leger, G. G. Meisels and T. 0. Tiernan, *J. Chem. Phys.,* 1970, *52,* 4319.
- 10 T. B. McMahon and **J.** L. Beauchamp, *J. Phys. Chem.,* 1977,81, 593.
- 11 Drewello *er af.12* observed exclusively D+ transfer from $-CH_2ND_3$ ⁺ to ND₃, which they took to imply that CH_3NH_2 ⁺ and .CH2NH3+ do not interconvert; a less restrictive interpretation **is** that the interconversion does not compete efficiently with exothermic proton transfer.
- 12 T. Drewello, N. Heinrich, W. **P.** M. Maas, N. M. M. Nibbering, T. Weiske and H. Schwarz, J. *Am. Chem. Soc..* 1987, 109,4810.
- 13 -CH2NH3+ formed in the external ion source by CO **loss** from acetamide. **l2**
- 14 ΔH_f ^{[-}CH₂BrH⁺] is about 22 kcal mol⁻¹ higher than ΔH_f $[CH₃Br⁺]$: L. Radom, personal communication.
- 15 D. K. Bohme, *Int. J. Mass Spectrom. Ion Proc.*, 1992, 115, 95.