Mechanism of Nucleophilic Solvolysis of 1,2-Dibromo-1,2-dihydrocyclobuta[b]pyridine; X-Ray Crystal Structure Analysis of 1,2-Dihydro-1-methoxycyclobuta[b]pyridine Methiodide

Grainne Conole and Michael K. Shepherd*

School of Applied Chemistry, University of North London, London, UK N7 8DB

trans-1,2-Dibromo-1,2-dihydrocyclobuta[*b*]pyridine **1a** undergoes nucleophilic methanolysis with retention of configuration *via* 2-bromocyclobuta[*b*]pyridine **2**; the crystal structure of 1,2-dihydro-1-methoxycyclobuta[*b*]pyridine methiodide is described.

1,2-Dibromo-1,2-dihydrocyclobutabenzene is resistant to nucleophilic substitution, as a consequence of the strained ring imposing a relatively high degree of s-character on the carbon-bromine bonds. In contrast, we have found that *trans*-1,2-dibromo-1,2-dihydrocyclobuta[b]pyridine 1a¹ reacts with sodium methoxide in methanol to give predominantly (80%) the *trans*-1-substitution product 5a,[†] the ¹H NMR spectrum showing singlets for the cyclobutene protons at δ

Fig. 1 The structure of 1,2-dihydro-1-methoxycyclobuta[b]pyridine methiodide. Selected bond distances (Å) and angles (°): C(1)-C(2) 1.599(12), C(1)-C(6a) 1.649(13), C(1)-O(7) 1.061(13), C(2)-C(2a) 1.528(11), C(2a)-N(3) 1.324(10), C(2a)-C(6a) 1.421(10), N(3)-C(4) 1.355(10), N(3)-C(9) 1.482(9), C(4)-C(5) 1.381(11), C(5)-C(6) 1.436(14), C(6)-C(6a) 1.429(11), O(7)-C(8) 1.449(11), C(6a)-C(1)-C(2) 85.6(7), O(7)-C(1)-C(2) 129.3(9), O(7)-C(1)-C(6a) 136.0(9), C(2a)-C(2)-C(1) 84.0(6), N(3)-C(2a)-C(2) 139.6(6), C(6a)-C(2a)-C(2) 96.9(6), C(6a)-C(2a)-N(3) 122.5(7), C(4)-N(3)-C(2a) 116.7(6), C(9)-N(3)-C(2a) 120.0(6), C(9)-N(3)-C(4) 122.6(7), C(5)-C(4)-118.8(7), C(6a)-C(5) 109.4(7), C(2a)-C(6a)-C(1) 85.6(6), C(6)-C(5a)-C(1) 130.6(8), C(6)-C(5a)-C(2a) 113.4(8), C(8)-O(7)-C(1) 128.7(8).

4.96 (1-H) and 5.27 (2-H).[‡] This was accompanied by traces (ca. 5% each) of the corresponding cis-isomer 5b, characterised by doublets in the ¹H NMR spectrum for the cyclobutene protons, and the quinoline derivative 4. A similar ratio of products 4 and 5a, b was obtained under the same conditions from the cis-dibromide 1b. Preferential displacement of the 1-bromo-substituent in 1, expected from the relative electron densities at C(1) and C(2), was confirmed by catalytic hydrogenation of 5a to 1,2-dihydro-1-methoxycyclobuta[b]pyridine, followed by an X-ray crystal structure analysis§ of the corresponding methiodide salt (Fig. 1). The internal angles of the pyridine ring differ significantly from 120°, with the largest deviation for C(5)-C(6)-C(6a) of 109.4(7)°. This contrasts with 1,8-diazabiphenylene² and 1,2-dihydrocyclobuta[b]quinoline,³ in which the most acute angles in the six-membered rings (at ca. 112°) are those subtended at the heteroatom; the analogous angle C(4)-N(3)-C(2a) in Fig. 1 is considerably larger, at 116.7(6)°.

The unexpected observation that substitution of **1a** proceeds with retention of the *trans*-configuration at C(1)–C(2) leads us to propose an elimination–addition pathway involving 2-bromocyclobuta[b]pyridine **2** (Scheme 1). While well-documented for aromatic and vinylic substitutions, this type of mechanism is unusual in aliphatic systems,⁴ the more so in this case owing to the predicted high energy of the cyclobutadienoid intermediate **2**.⁵ However, this pathway is consistent with the formation of the byproduct **4**, one of four possible 'angular' dimeric products of **2**. The structure **4** was established by comparison with substituted benzocyclobutene dimerisations⁶ and by ¹H NMR spectroscopy, 7-H showing an NOE on irradiation of 6-H. The dimer **4** is the major product (88%) in Et₂O solvent along with **5a** (6%); the *cis*-isomer **5b** could not be detected.

Further support for this mechanism was obtained from an analogous solvolysis of **1a** in CH₃OD, which resulted in deuterium incorporation at C(2) in the product. Neither **1a** nor **5a** underwent H–D exchange under identical conditions (as determined by NMR monitoring). The elimination step is therefore essentially irreversible, E_{1cb} deprotonation at C(2) being facilitated by the β -nitrogen. The addition step appears to proceed *via* reprotonation of **2** followed by *anti*-attack on the resulting bromonium ion **3**; the alternative sequence of nucleophilic addition of methoxide anion to **2** followed by protonation should be less stereospecific.

Received, 1st August 1994; Com. 4/04700A

Footnotes

† New compounds gave satisfactory microanalytical and mass spectroscopic data.

 dd, 2-H), 3.58 (3H, s, OMe), 3.66 (1H, dd, 2'-H), 4.98 (1H, dd, 1-H), 7.13 (1H, dd, 5-H), 7.49 (1H, dd, 6-H), 8.48 (1H, dd, 4-H).

§ Crystal data for C₉H₁₂NOI, M = 277.02, monoclinic, space group 539.07 Å³, F(000) = 268, $\mu(Mo-K\alpha) = 27.24$ cm⁻¹, Z = 2, $D_c = 1.71$ g cm⁻³. Data were collected on a Philips PW 1100 diffractometer in the θ range 3–26° with a scan width of 0.90°. Equivalent reflections were merged to give 986 absorption-corrected data with weights of $l/\sigma(l) > 3.0$. R = 0.0352, $R_w = 0.0388$ with weights of $w = 1/\sigma^2 F_o$ assigned to the individual reflections. Atomic coordinates, bond distances and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 M. K. Shepherd, J. Chem. Soc., Perkin Trans. 1, 1986, 1495. 2 B. R. Deroski, J. S. Ricci, J. A. H. MacBride and J. H. Markgraf, Can. J. Chem., 1984, 62, 2235.
- 3 B. R. Deroski, J. H. Markgraf and J. S. Ricci, J. Heterocycl. Chem., 1983, 20, 1155.
- 4 A. F. Popov, Z. Piskunova and V. N. Matvienko, Zh. Org. Khim., 1986, 22, 1299.
- 5 M. D. Gheorghiu and P. Filip, Rev. Roum. Chim., 1974, 19, 859.
 6 M. K. Shepherd, Cyclobutarenes. The Chemistry of Benzocyclobutene, Biphenylene, and Related Compounds, Studies in Organic Chemistry 44, Elsevier, Amsterdam, 1991.