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The thiocarbonyl group of monothiomaleimide 1 serves as a more reactive dienophile than the electron-deficient C=C 
double bond in the same molecule for the Diels-Alder reaction with dienes 2c-g and provides ortho-endo products 3 
exclusively or predominantly over the other possible adducts 4-10. 

The Diels-Alder' and hetero-Diels-Alder reactions? are 
among the most powerful carbon-carbon and carbon- 
heteroatoni bond-forming processes and have long been of 
interest to many synthetic and theoretical organic chemists. 
Despite extensive studies, however, the regio- and stereo- 
chemical behaviour of thioaldehydes and thioketones in the 
Diels-Alder reaction are still ill-defined.3 

The thiocarbonyl group of acid derivatives (e.g.  dithioester, 
thioamide) is less reactive4 and generally can serve as a 
dienophile, if activated as a-0x05 or  anhydride derivatives.6 In 
a,[j-unsaturated systems, it may react as a component of a 
diene.7 Here we report that the thiocarbonyl group of 
N-substituted monothiomaleimide 1,  doubly activated with 
imide and vinylogous 0x0 moieties, serves as a more reactive 
dienophile than the electron-deficient C=C double bond 
present in the same molecule and displays high regio- (o- and 
p - )  and stereo-selectivities (endo) towards 1 ,3-dienes. These 
selectivities rank as some of the highest among thiocarbonyl 
Diels-Alder reactions of acid derivatives.6 

N-Substituted monothiomaleimides (1 ,  R = Ph, 
p-02NChH4. p-MeOChH4, PhCH2) react with dienes 2a-g at 
room temperature and provide the addition products 3-6 in 
good yields (Scheme 1, Table 1). N-(p-Nitropheny1)mono- 
thiomaleimide (1, R = p-02NChH4) is too unstable to isolate 
and is subjected to reaction without rigorous purification (run 
7, Table 1) .  

The chemoselectivity between the C=S and C=C double 
bonds of I changes dramatically depending on the substitution 
pattern o f  the dienes, and in general the ratio of the C=S 
adducts (3 + 4) to C=C adducts (5 + 6) increases with an 
increase in the n-conjugation of 1.3-dienes with their substitu- 
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Fig. 1 (u )  Nuclear Ovcrhauscr effects for 3c and 4c ( R  = Ph)  (400 MHz 
' H  NMR).  ( h )  '3C NMR chemical shifts ( b  in ppm) for Sc, 6c ( R  = 
Ph),  and the  rclatcd compounds. 

ents, from 45/55 for 2a,b (runs 1-2) to 100/0 for 2e-g (runs 
8-11). The chemoselectivity is also affected by the type of 
N-substituent; the stronger the electron attraction of the 
substituents, the greater the C=S selectivity (runs 3-7). 

The thiocarbonyl group of 1 shows unique regio- and 
stereo-selectivities. As for the regioselectivity, the o p o r i e n -  
tation products 3 (and 4)s are formed exclusively. The 
rn-products 7 (and 8) cannot be detected at all for dienes. The 
specific formation of the p-product 3b in the reaction with 
isoprene 2b is very impressive (run 2 and footnote f in Table 
l ) ,  since 2b is notorious for providing rn- andp-mixtures with a 
slight preference for the p-isomers.",') Indeed, the C=C 
adducts, 5b and 6b, were formed as a 1 : 1 mixture (run 2, 
Table 1). As for the stereoselectivity, the thiocarbonyl group 
of 1 is highly endo-selective, providing 3 exclusively (runs 6-7, 
9-11) or highly selectively (runs 3-5, 8). Interestingly, a 
significant increase in the endolexo ratios (3/4) is observed 
with an increase in electron attraction of the N-substituents 
(runs 3-5). 

The C=C double bond of 1 furnishes endo-addition products 
as a mixture of regioisomers 5 and 6. No exo-adducts 9 and 10 
are formed. As judged from a preferential formation of 5 over 
6 (runs 3-9 ,  the thiocarbonyl group, rather than the carbonyl 
group, seems to be operating as an ortho-directing functional- 
ity. 

The structures of 3-6 were deduced from 1H and 13C N M R  
spectra.? The key data for 3cdc  and the related compounds 
are shown in Fig. 1. The structures of 3d-g were elucidated by 
similar procedures. The 'H and 13C NMR spectra of 6c (R = 
Ph) are identical to those of the product obtained selectively 
by the thionation of 11, the Diels-Alder product of 1,3- 

1 " 2 3 4 
a R' = R2 = R3 = H 
b R1 = H, R2 = Me, R3 = H 
C R' = Me, @ = R3 = H 
d R' = Me, R2 = H ,  R3 = Me 
e R' = CH=CH2, R2 = R3 = H 
f R '=Ph,R2=R3=H 

6 g R' = C02Me, = ti, R3 = Me 5 

Scheme 1 
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Table 1 Diels-Alder reaction of N-substituted monothiomaleimide 1 with dienes 211 

Product ratio 

1 Timeb Yieldc C=S (3 + 4)/ 
Run (R) Diene2 (h) (%) C=C(5 + 6)" 314' 5/6e 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Ph 
Ph 
Ph 
p-MeOC6H4 

Ph 

Ph 
Ph 
Ph 
p-MeOC6H4 

PhCHz 

P-02NC6H.1 

2a 
2b 
2c 
2c 
2c 1 
2d 
2d 
2e 
2f 
2g 
2g 

48 
53 
90 
16 

120 
6 

12 
2 
1 

20 
15 

100 
84 
94 
76 
61 
87 

92 
86 
80 
89 

4 

45/55 
45/55 
71/29 
62/38 
41/59 
66/34 
73/27 

1 0010 
1 0010 
100/0 
1 0010 

- A 
-f 50150 
90110 75/25 
89/11 72/28 
76/24 69/31 

100/0 -h 

10010 --./I 

9317 
10010 
100/0 
1 0010 

Reaction conditions: 1 (1 mmol) and 2 (10 mmol) in 1 ml of benzene at room temperature under N2. 
Combined isolated yield of 3-6. 

Approximate time required for 
Ratio determined the completion of the reaction. 

from 1H NMR spectra (400 MHz). f 3  (= 4) : 7 (= 8) = 100/0. 6 Yield not determined (see text). h 5 = 6. 
Ratio determined from the isolated yield. 

pentadiene and N-phenylmaleimide, with P4Sl0. The structure 
of 3b could be resolved using 2D NMR (400 MHz) techniques, 
including C H  COSY and C H  COLOC (e.g. correlations 
between C8-CH3 and C7, C8, C9; C7H2 and Cs, C,, C9; CIOH2 
and C9). lo 

Extensive studies aimed at rationalizing the unique selectiv- 
ity and reactivity of 1 delineated here are under progress 
following both experimental and theoretical lines.3h 
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Foot note 
t All new compounds, the stereoisomers 3 and 4 separately and 5 and 
6 as mixtures, showed satisfactory spectral and analytical data. 
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