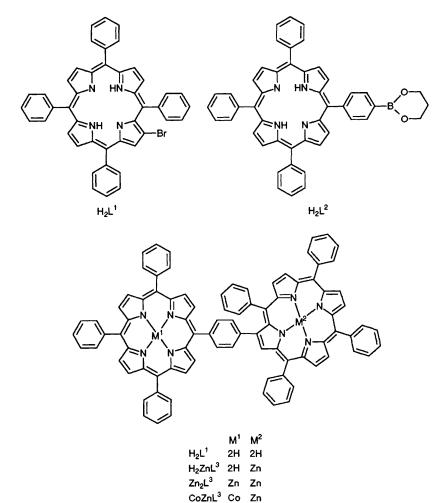
Synthesis of a β -Linked Porphyrin Dimer and some Homo-, and Hetero-bimetallic Complexes

Xiang Zhou and Kin Shing Chan*


Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong

The porphyrin boronate H₂L² undergoes Suzuki cross-coupling reaction with β -monobromoporphyrin H₂L¹ to give the unsymmetrically substituted porphyrin dimer H₄L³ in high yield; homo-, and hetero-bimetallic complexes of H₄L³ are prepared.

Porphyrin dimers and their metal complexes have been used as important biomimics for photosynthetic centres,1,2 and electrocatalysts for O₂ reduction.³ As synthetic models to aid in the understanding of the dimeric porphyrin-like nature of the electron donor in chlorophyll and for the active sites of water oxidation in photosynthetic system II, a variety of porphyrin dimers with different geometries and separation distances have been synthesized. These include linear or loosely stacked dimers¹ and cofacial dimers.² Binuclear metal complexes of such systems have exhibited highly interesting electrocatalytic properties through cooperativity of the metal centres.^{2,3} However until now, all such reported dimers are only obtainable via long and tedious synthetic procedures and are generally linked via meso aryl linkages. We report herein our initial results of a facile method to synthesize a porphyrin dimer linked via meso- and β -positions by a phenylene linker via Suzuki cross-coupling.⁴ We have also synthesized new dimeric homo-, and hetero-metalloporphyrins (Fig. 1).

Encouraged by our success in synthesizing β -substituted porphyrins by Suzuki cross-coupling,⁵ we envisaged that a porphyrin dimer would be obtained from the coupling of monobromoporphyrin H₂L¹ and boronate porphyrin H₂L². The porphyrin boronate H₂L² was prepared in 33% yield from the condensation of *p*-(1,3-dioxaborane)benzaldehyde (1 equiv.)-benzaldehyde (3 equiv.) with pyrrole (4 equiv.) in CHCl₃ at room temp. for 24 h under N₂ in the presence of a catalytic amount of TsOH.⁶ Porphyrin H₂L¹ underwent a smooth Suzuki cross-coupling reaction with H₂L² to give a high yield (88%) of the unsymmetically substituted porphyrin dimer H₄L³ [eqn. (1)].

$$H_{2}L^{1} + H_{2}L^{2} \xrightarrow[90-100]{}{}^{Pd(PPh_{3})_{4}}_{48 h} H_{4}L^{3}$$
(1)

 Co_2L^3

Ni₂L³

Co Co

Ni Ni

Fig. 1

Homobinuclear, mononuclear and heterobinuclear complexes of the porphyrin dimer H_4L^3 have been successfully prepared. The homobinuclear complexes were prepared in 76-95% yields from corresponding metal acetates in CHCl₃-MeOH at room temp. or in refluxing DMF. The synthesis of heterobimetalloporphyrins required selective monometallation. When $Zn(OAc)_2 \cdot 2H_2O$ (1 equiv.) in methanol was added to H₄L³ (1 equiv.) in CHCl₃ at room temp. in one portion, both H_4L^3 and Zn_2L^3 were obtained. By contrast, when a methanolic solution of $Zn(OAc)_2$ was slowly added to H_4L^3 in CHCl₃ at room temp. (1 drop every 5 min), the major product was found to be H_2ZnL^3 (76% yield based on consumed H_4L^3). Metallation was found to be selective at the β -substituted porphyrin core and the structure of H₂ZnL³ was confirmed by independent synthesis through the cross-coupling of H_2L^2 with ZnL^1 [eqn. (2)].

$$H_{2}L^{2} + ZnL^{1} \xrightarrow[90]{}{} \frac{Pd(PPh_{3})_{4}}{K_{2}CO_{3}} H_{2}ZnL^{3} \qquad (2)$$

90-100 °C (52%)
48 h

UV-VIS spectra of H₄L³, H₂ZnL³, Zn₂L³ and CoZnL³ show split Soret bands. Those of H₄L³ ($\lambda_{max} = 418$ and 426 nm) were red-shifted compared to those of H₂tpp⁵ ($\lambda_{max} = 418$ nm). Complexes Co₂L³ ($\lambda_{max} = 412$ nm, band width at half height = 33 nm) and Ni₂L³ ($\lambda_{max} = 422$ nm, band width at half height = 38 nm) showed broadened Soret bands likely due to the expansion of porphyrin ring π -system through excitonic interaction. Emission spectra reveal that CoZnL³ shows a much weaker fluorescence compared to that of H₄L³, H₂ZnL³ and Zn₂L³ possibly by fluorescence quenching *via* an electron transfer pathway.

J. CHEM. SOC., CHEM. COMMUN., 1994

We thank Dr K. Y. Wong of Hong Kong Polytechnic for the use of a fluorescence spectrometer and Hong Kong Research Grants Council (A/C No 221600050) for financial support.

Received, 9th August 1994; Com. 4/04878D

Footnote

† All new compounds have been characterized by ¹HNMR, MS, UV–VIS spectroscopy and elemental analyses. H_4L^3 : $\delta_{H}(CDCl_3; 250 \text{ MHz}) -2.74$ (s, 2 H), -2.49 (s, 2H), 7.24 (dd, J7.4, 7.7, 2 H), 7.72 (m, 21 H), 8.00 (d, J9.2 H), 8.26 (m, 14 H), 8.93 (m, 15 H); UV, λ_{max} (nm, log ϵ) 418 (5.38), 426 (5.39), 516 (4.28), 592 (3.76), 648 (3.70); FAB MS (nba matrix) *m*/z 1227 (M+-1) (Found: C, 85.00; H, 4.80; N, 8.85. $C_{88}H_{58}N_8$ ·H₂O requires C, 84.85; H, 4.85; N, 9.00%. CoZnL³: UV, λ_{max} (nm, log ϵ) 423 (5.20), 550 (4.67); FAB MS (nba matrix) *m*/z 1347 (M+) (Found: C, 75.75; H, 4.85; N, 7.35. $C_{88}H_{54}N_8$ -CoZn-2.5CH₃OH requires C, 76.15; H, 4.50; N, 7.85%).

References

- J. L. Sessler, M. R. Johnson, S. E. Creager, J. C. Fettinger and J. A. Ibers, J. Am. Chem. Soc., 1990, 112, 9310; A. Osuka, F. Kobayashi, S. Nakajima, K. Maruyama, I. Yamazaki and Y. Nishimura, Chem. Lett., 1993, 161; D. P. Arnold and L. J. Nitschinsk, Tetrahedon Lett., 1993, 34, 693; V. S.-Y. Lin, S. G. DiMagno and M. J. Therien, Science, 1994, 264, 1105; M. O. Senge, K. R. Gerzevske, M. G. H. Vicente, T. P. Forsyth and K. M. Smith, Angew. Chem. Int. Ed. Engl., 1993, 32, 750.
- 2 R. Guilard, M. A. Lopez, A. Tabard, P. Richard, C. Lecomte, S. Brandes, J. E. Hutchison and J. P. Collman, J. Am. Chem. Soc., 1992, 114, 9877; J. P. Collman and J. M. Garner, J. Am. Chem. Soc., 1990, 112, 166.
- 3 C. K. Chang, H. Y. Liu and I. Abdalmuhdi, J. Am. Chem. Soc., 1994, 106, 2725; J. P. Collman, K. Kim and C. R. Leidner, Inorg. Chem., 1987, 26, 1152.
- 4 A. Suzuki, Pure Appl. Chem., 1994, 66, 213.
- 5 K. S. Chan, X. Zhou, B.-S. Luo and T. C. W. Mak., J. Chem. Soc., Chem. Commun., 1994, 271.
- 6 H. Toi, Y. Nagai, Y. Aoyama, H. Kawabe, K. Aizawa and H. Ogoshi, *Chem. Lett.*, 1993, 1043.