Allyl, Amidinium and Cyclopropenyl Cations from the Reactions of Primary and Secondary Amines with Pentachlorocyclopropane

Michael J. Taylor," Peter W. 3. Surman and George R. Clark

Department of Chemistry, University of Auckland, Private Bag 9201 9, Auckland, New Zealand

The action of secondary amines on c-C₃HCl₅ is a simple new route to aminocyclopropenyl ions, whereas primary amines cause ring opening to an allyl cation, e.g. [(Bu^tHN)₂CCHC(NHBu^t)₂]+ identified crystallographically, which is reversibly protonated at the central carbon to become a bis(amidinium) dication.

Cyclopropenyl cations $[C_3X_3]^+$ can bear various substituents.¹ The existing route to aminocyclopropenyl ions $(X = NR₂)²$ requires the prior conversion of pentachlorocyclopropane to tetrachlorocyclopropene using aqueous KOH in which the yield is low and side reactions cause hydrolysis to α , β dichloroacrylic acid. The direct preparation of 1 or **2** in Scheme 1, where the secondary amine alone provides the strong base, is a much better method. The products are identical with those we have obtained from c -C₃Cl₄.

The crystal structure of $1c$ -ClO₄3 shows piperidine rings in the chair conformation attached to a planar \tilde{C}_3N_3 core within which the C-C and C-N distances are in harmony with previous measurements of $1a.4$ Parallel investigations of $2\text{-}Cl$, which is the end product (even when excess Pri₂NH is employed and the mixture is refluxed) explore a cyclopropenyl ion in which the structural properties respond to the different substituents. NMR and vibrational spectra are diagnostic; e.g. **2** gives 13C signals at **6** 93.2 and 131.8 from the carbons bearing Cl and \overline{N} atoms, respectively, whereas $[C_3(NR_2)_3]^+$ ions, **1a-c**, give a signal close to δ 118.⁵ X-Ray analysis3 of **2** finds a C-C bond of 1.39 **8,** between the carbons bearing the amino groups, and two shorter ring bonds of 1.29 A. The C-CI single bond of 1.75 **A** is in marked contrast to the contracted C-CI bonds of 1.64 Å in $[C_3C_3]+b$.

Short exocyclic C-N bonds of 1.30 **8,** in **2,** implying partial double bond character, are matched by NMR spectra which demonstrate inequivalent $Prⁱ$ groups of the $Prⁱ2N$ substituents. The ¹H spectrum at 400 MHz and 298 K in D₂O consists of an overlapping pair of Me doublets with centres 2.7 **Hz** apart and two CH septets separated by 32.4 Hz. Coalescence occurs at 322 and 350 K, and furnishes $\Delta G^{\dagger} = 74.3$ and 73.8 \pm 0.7 kJ mol⁻¹, respectively, with ΔS^{\ddagger} *ca.* zero. These values are typical of C-N bonds with restricted rotation?

Primary amines act on c -C₃HCl₅ by a different course where replacement of chlorine is accompanied by ring opening, so that the C_3 unit becomes the nucleus of an allyl cation with amino substituents.[†] Thus, reaction of Bu^tNH₂ with c -C₃HCl₅ is rapid at ambient temperature in chloroform to yield $3 \cdot \text{Cl}$. Treatment with AgNO₃ gave crystals of $3 \cdot \text{NO}_3$ suitable for X-ray study.\$ Fig. 1 shows the presence of four -NHBut groups. The central carbons, of which C(2) carries a hydrogen atom, each have trigonal coordination, and the N-C-N planes are inclined at just 28.2" to one another. These facts, plus the uniformity in the C–C and C–N bond lengths, suggest electron delocalisation over all seven atoms of the N_2 CCCN₂ framework which should contribute significantly to its stability. Interestingly, the kindred species its stability. Interestingly, $[(Me₂N)₂CCHC(NMe₂)₂]$ ⁺ is the minor product (yield 9%) of alkaline hydrolysis of the **tris(dimethy1amino)cyclopropenyl** ion la, alongside **bis(dimethy1amino)cyclopropenone** (65%).9

Seeking other salts, we added HCI to an aqueous solution of 3 as a prelude to introducing a metal chloride complex anion. The acidification caused an unexpected change in NMR to give two inequivalent sets of tert-butyl signals. After adding $GaCl₃$ in 6 mol dm⁻³ HCl the solution deposited colourless crystals of $[4][GaCl₄]₂$.# Only slight changes in the IR or Raman spectra accompany the protonation which has occurred, and 3 is regenerated when the acidic solution is neutralised. X-Ray crystallography established the structure of 4 in which the extra H^+ is attached to $C(2)$ converting this previously unsaturated atom into a methylene group.\$ In consequence the C–C–C bond angle (127.1 \degree in 3) is now 112.4 \degree and close to the tetrahedral value. The C-C bonds have extended from 1.40 in 3 to 1.51 Å in 4, becoming single bonds and destroying the allyl character. Meanwhile the pairs of $C-N$ bonds contract from 1.36 (average) to 1.32 **A** to become amidinium systems. The N-C-N planes are now inclined at an angle of 82.0", which argues decisively against their being encompassed by overall π -bonding.

Scheme 1 *Reagents and conditions:* CHCl₃ for **1-3**; 6 mol dm⁻³ HCl for **4**

Fig. 1 The 1,1,3,3-tetrakis(tert-butylamino)allyl cation. [(Bu^tHN)₂-CCHC(NHBU~)~]+ **3,** with **SO%** thermal ellipsoids. Selected bond distances (Å) and angles (°): C(2)-C(1,3) 1.375(4), 1.416(4), C(1)-N(1,2) 1.340(4), 1.409(4); C(3)-N(3,4) 1.345(4). 1.336(4): C(1)- $C(2)$ -C(3) 127.1(3); C(2)-C(1)-N(1,2) 124.2(3), 120.5(3); N(1)-
C(1)-N(2) 115.3(3); C(2)-C(3)-N(3,4) 120.4(3), 121.5(3); N(3)-C(3)-N(4) 118.0(3). Hydrogen-bonded contacts to $NO₃$ ⁻ ion: $N(1)\cdots O(1)$ 2.94; $N(2)\cdots O(3)$ 3.15 Å.

The C-N bonds of **4** are similar in length to those of **2** and again produce a barrier to rotation. In the ¹H NMR spectrum of acidified D20 solution of **4,** at 400 **MHz** and 298 K, the Me hydrogen signals of the distinct ButN- environments (where the geometry about the C-N bond is *cis* or *trans* to the central CH2 group) are separated by 18.2 Hz but these coalesce at 345 K, giving a value of ΔG^{\ddagger} , 74.3 \pm 0.6 kJ mol⁻¹, near that of 2.

We return to the aminocyclopropenyl system to stress its stability; not only is the C_3 nucleus resistant to prolonged exposure to hot water, it is also capable **of** oxidation to a radical dication.¹⁰ Treatment of **1b** as the chloride in CH₂Cl₂ with SbCl₅ affords dark-red crystals of $[C_3(NEt_2)_3](SbCl_6)_2$. Confirmation that the ring remains intact is provided by the FT Raman spectrum which has a peak at 1555 cm⁻¹ matching the IR-active C-C band at 1550 cm^{-1} . A strong peak at 1906 cm^{-1} is assignable to the ring-breathing mode, being the counterpart of that of **lb** at 1963 cm-1. Oxidation removes an electron from the HOMO of a_2 " symmetry¹¹ and the decrease of 57 cm-1 in the symmetric C-C stretch reflects the consequent bond weakening.

We thank the University of Auckland Research Committee for support and the London University Raman Service (ULIRS) for FT Raman spectra.

Received, 16th August 1994; Corn. 4105014B

Footnotes

 \uparrow The reaction of pyridines with c -C₃Cl₄ is of interest since it also causes ring-opening and displacement of CI substituents: K. C. Waterman and A. Streitwieser. Jr., *J.* Am. Chem. Soc., 1984, 106, 3874.

 \ddagger Compound 3.Cl: tert-butylamine (3.35 g, 46 mmol) was added dropwise to a stirred solution of pentachlorocyclopropane (1.23 g, 5.7 mmol) in CHCl₃ (40 cm³) at 20 °C. After 1 h the mixture was filtered to remove precipitated rerr-butylammonium chloride and concentrated under vacuum to an oil which formed a cream-coloured microcrystalline solid on adding Et₂O (1.0 g, 48%); mp 157-159 °C; MS: m/z 325 (M+); 'H NMR (200 MHz, CDC13.25 *"C):* 6 1.43 (36H. **S,** CH3), 4.29 (1H, **S,** CH), 6.82 (4H, **S,** NH); 13C (50.3 MHz, CDC13,25 "C): 6 30.0 (Me), 53.7 (CMe₃), 73.7 (CCHC), 160.7 (CCHC); IR: v/cm⁻¹ 1560 (vs, C=N_{sym}), 1610, 1626 (vs, C=N_{asym}).

Compound $4[GaCl₄]$: a solution containing $GaCl₃$ (2 equiv.) in 6 mol dm⁻³ HCl was added to an aqueous solution of 3 -Cl which then deposited colourless crystals identified by X-ray analysis and spectroscopically; mp (decomp) 212-222 °C; IR: v/cm⁻¹ 1559 (m, C=N_{sym}),

1632 (vs, **C=Nasym).** NMR of 4 in 6 mol dm-3 DCI; 1H (200 MHz, 25 "C): 6 *2.58* (18H, **s,** Me), 1.61 (18H, **s,** Me); 13CNMR (50.3 MHz, 25 $^{\circ}$ C): δ 30.1 (Me), 32.0 (Me), 35.0 (CCH₂C), 58.6 (CMe₃), 60.9 (CMe_3) , 160.0 (CCH_2C) .

§ Crystal data (Enraf-Nonius CAD4 diffractometer): for compound $3.NO_3 C_{19}H_{41}N_5O_3$, $M = 387.6$, monoclinic, space group, $P2_1/c$, $a =$ 12.195(3), $b = 17.717(3)$, $c = 12.388(2)$ Å, $\beta = 114.57(2)$ °, $U = 2434$ \AA^3 , $T = 291$ K, $F(000) = 856$; $Z = 4$, $D_c = 1.06$ g cm⁻³, Mo-K α , $\lambda =$ 0.71069 Å, μ (Mo-K α) = 0.078 mm⁻¹, specimen 0.31 × 0.29 × 0.21 mm, 4281 unique reflections, 2120 with $F > 4\sigma(F)$ used in refinement, $2\theta_{\text{max}} = 50^{\circ}$

Compound 4 $[GaCl₄]₂, C₁₉H₄₂Cl₈Ga₂N₄, M = 749.6, monoclinic,$ space group $P2_1/c$, $a = 11.370(4)$, $b = 21.303(3)$, $c = 14.755(2)$ Å, $\beta =$ 95.05(2)°, $U = 3560 \text{ Å}^3$, $T = 293 \text{ K}$, $F(000) = 1528$; $Z = 4$, $D_c = 1.40$ g cm⁻³, Mo-K α , λ = 0.71069 Å, μ (Mo-K α) = 2.21 mm⁻¹, specimen $0.40 \times 0.37 \times 0.26$ mm, 6892 unique reflections, 2456 with $F > 4\sigma(F)$ used in the refinement, $2\theta_{\text{max}} = 52^{\circ}$.

Structures were solved by direct methods using SHELXS-86 and refined by full-matrix least-squares analysis on *F2* using SHELXL-92. In $3.NO₃$ the hydrogen atoms were located and refined with individual isotropic temperature factors; the final residuals were $R_1 = 0.059$, wR_2 $= 0.196$. In $4[GaCl₄]_2$, the [GaCl₄]⁻ ions were disordered, limiting the accuracy of the structure, and thc hydrogen atoms were not located; the final residuals were $R_1 = 0.100$, $wR_2 = 0.372$. Atomic coordinates, bond lcngths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors. Issue No. **1.**

References

- **1** *Z.* Yoshida. Top. Curr. Chem.. 1973,40, 47.
- 2 Z. Yoshida and **Y.** Tawara, J. Am. Chem. *SOC.,* 1971, 93. 2573.
- 3 G. R. Clark, P. W. J. Surman and M. J. Taylor, unpublished results.
- 4 **F.** H. Allen, Tetruhedron, 1982, **38,** 645; **H.** N. Schafner, H. Burzlaff, A. M. H. Grimmeiss and R. Weiss, Acta Crystallogr., Sect. C, 1991, 47, 1808; 1992, 48. 795.
- 5 E. V. Dehmlow, R. Zeisberg and S. S. Dehmlow, Org. Magn. Reson., 1975, **7,** 418.
- 6 G. R. Clark, M. J. Taylor and D. Steele, *J. Chem. Soc., Faraday* Trans., 1993, 89, 3597.
- 7 **B.** E. Mann, Adv. NMR Spectrosc., 1977, **11.** 95; M. Oki. Applications of Dynamic NM *R* Spectroscopy *to* Organic Chemistry, Verlag Chemie, Weinheim, 1985.
- 8 W. **E.** Stewart and T. H. Siddall, 111, Chem. Rev., 1970, **70,** 517. 9 Z. Yoshida, H. Konishi, **Y.** Tawara, K. Nishikawa and H. Ogoshi,
- Tetrahedron Lett., 1973, 2619.
- **^I**0 **R.** Weiss and K. Schloter. Tetrahedron Lett. 1975, 3491.
- **11** M. H. Lien and A. C. Hopkinson, J. *Mol.* Struct. (Theochem.), 1988, 165,37.