Cycloaddition of $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{CS}_{2}$: Direct One-pot Conversion of Strained Double Bonds to 2-Alkylidene-1,3-dithiolanes

R. Alan Aitken,* Tracy Massil and Swati V. Raut
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, UK KY16 9ST

Reaction of the strained double bond in bicyclo[2.2.1]heptene systems with $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{CS}_{2}$ and an aldehyde provides convenient access to the corresponding 2-alkylidene-1,3-dithiolanes.

Although the red crystalline adducts formed between trialkylphosphines and CS_{2} have been known for well over 100 years, ${ }^{1}$ their chemistry has been little investigated. Reaction of the tri-n-butylphosphine adduct $\mathbf{1}$ with electron deficient alkynes leads to cycloaddition across the two sulfur atoms to give 2-tri-n-butylphosphoranylidene-1,3-dithioles which can be trapped by inter ${ }^{2}$ or intra-molecular ${ }^{3}$ protonation or by in situ Wittig reaction with an added aldehyde. ${ }^{4}$ In the absence of any trap, we have shown that $2: 1$ adducts with a stabilised ylide structure are formed. ${ }^{5}$ Only one report of the interaction of 1 with a double bonded compound has appeared: the reaction with dimethyl maleate in MeOH which produced dimethyl succinate, $\mathrm{Bu}_{3} \mathrm{BPO}_{3}, \mathrm{CS}_{2}$ and dimethyl ether. ${ }^{4}$ On the basis of recent experiments, we believe that this does not involve a cycloaddition but rather conjugate addition of $\mathrm{Bu}_{3} \mathrm{P}$, formed by dissociation of $\mathbf{1}$, followed by methanolysis of the resulting stabilised ylide. We now report the first cycloaddition of 1 to alkene double bonds.

While 1 was unreactive towards a wide variety of alkenes including styrene, stilbene, hex-1-ene, cyclohexene and cyclopentene, it reacted rapidly at room temperature with norbornene in diethyl ether to give a pink precipitate. On the basis of analytical and spectroscopic properties, t particularly the observation of ${ }^{13} \mathrm{C}$ NMR signals at $\delta 240.1\left({ }^{2} J_{\mathrm{CP}} 8 \mathrm{~Hz}\right)$ and $90.9\left({ }^{1} J_{(\mathrm{P}} 39 \mathrm{~Hz}\right)$, this appears to be a $1: 1$ adduct $+\mathrm{CS}_{2}$ with the novel z.witterionic structure 3 . The exo configuration of the dithiolanc ring follows from the configuration of the Wittig products described below, but the exolendo configuration of the $\mathrm{Bu}^{\mathrm{n}}{ }_{3} \mathrm{P}^{+}$and $\mathrm{CS}_{2}{ }^{-}$groups and indeed the state of bonding within this part of the molecule remains uncertain. The thiaphosphctane structure cannot be ruled out. The formation of $\mathbf{3}$ is readily understood as resulting from initial formation of the expected $1: 1$ adduct $\mathbf{2}$ which is then stabilised by attack on

a second molecule of 1 with displacement of $\mathrm{Bu}^{n_{3}} \mathrm{P}$, which was indeed found in the filtrate from the reaction. It is notable that $\mathbf{3}$ is formed even with a $1: 1$ ratio of norbornene to $\mathbf{1}$, the precipitation of $\mathbf{3}$ obviously providing the driving force for the reaction.
Although 3 is essentially insoluble in diethyl ether, it dissolves readily in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in this solvent dissociates significantly to regenerate 2 . Thus, addition of benzaldehyde to a solution of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords the expected Wittig product 4 in moderate yield. The same product can be obtained by directly reacting norbornene, $\mathbf{1}$ and PhCHO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and indeed it is not even necessary to preform 1: interaction of $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CS}_{2}$, norbornene and PhCHO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature directly affords 4 . The small value of 2 Hz observed for the coupling between CHS and the bridgehead CH in $\mathbf{4}$ indicates the exo configuration shown.

The direct transformation of the double bond of norbornene to the 2-alkylidene-1,3-dithiolane of 4 in a one-pot procedure represents a valuable synthetic transformation. The same reaction also occurs for a variety of strained double bond compounds 5 , readily available from the Diels-Alder reaction of cyclopentadiene, to give the products 6 in moderate to good yield (Table 1). In most cases the products could be directly filtered off in pure form after stirring a solution of the reactants in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 24 h . The reaction at only one double bond in dicyclopentadiene $\mathbf{5 f}$ provides further evidence of the selectivity for strained double bonds. Even the two carbon bridged cyclohexa-1,3-dienemaleic anhydride adduct corresponding to $\mathbf{5 a}$ did not react with 1 and the system seems to be very sensitive to the degree of ring strain present. The reaction can also be carried out using MeCHO or $\mathrm{Pr}^{i} \mathrm{CHO}$ in place of PhCHO , but ketones do not react under the conditions so far examined.

With norbornadiene, 1 also reacts rapidly in diethyl ether to form a pink precipitate 8 . Elemental analysis of this indicates a gross composition corresponding to the expected $7+2 \mathrm{CS}_{2}$ but it is insoluble in any common solvent and has an unknown,

Table 1 Formation of 2-alkylidene-1,3-dithiolanes

Product	Yield (\%)	$\mathrm{mp} /{ }^{\circ} \mathrm{C}$	Product	Yield (\%)	$\mathrm{mp} /{ }^{\circ} \mathrm{C}$
$\mathbf{4}$	44	$77-78$	$\mathbf{6 e}$	91	$313-314$
$\mathbf{6 a}$	80	$185-186$	$\mathbf{6}$	39	$65-67$
$\mathbf{6 b}$	74	$264-265$	$\mathbf{6 g}$	16	$105-107$
$\mathbf{6 c}$	43	$157-159$	$\mathbf{9}$	71	$214-216$
$\mathbf{6 d}$	46	$246-247$	$\mathbf{1 0}$	70	$($ oil $)$

possibly polymeric, structure. If the reaction of 1 with norbornadiene is instead performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of an aldehyde, the expected bis-dithiolanes 9 and 10 are formed in good yield as a mixture of (E) - and (Z)-isomers.

Received, 14th September 1994; Com. 4/05611F

Footnote

\dagger All new compounds gave satisfactory microanalytical data.
Selected physical and spectroscopic data for 3, 4, 6a and 9.
3: Pink powder; mp $106-108{ }^{\circ} \mathrm{C}$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $240.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}} 8 \mathrm{~Hz}: \mathrm{CS}_{2}{ }^{-}\right), 90.9$ [d, $\left.{ }^{1} J_{\mathrm{CP}} 39: \mathrm{C}(4)\right], 67.4$ [s; C(2), $\mathrm{C}(6)], 43.4[\mathrm{~s} ; \mathrm{C}(1), \mathrm{C}(7)], 32.6[\mathrm{~s} ; \mathrm{C}(10)], 27.3[\mathrm{~s} ; \mathrm{C}(8), \mathrm{C}(9)], 25.8[\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}} 8 ; \mathrm{Bu} \mathrm{C}(2)\right], 24.9\left[\mathrm{~d}, 3 J_{\mathrm{CP}} 14 ; \mathrm{BuC}(3)\right], 21.1\left[\mathrm{~d}, J_{\mathrm{CP}} 43 ; \mathrm{Bu} \mathrm{C}(1)\right]$ and 14.0 [s; Bu C(4)]; ${ }^{31} \mathrm{P}$ NMR ($32 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{H}_{3} \mathrm{PO}_{4}$ ext.) : $\delta+41.7$; MS $(70 \mathrm{eV}): m / z 416\left(\mathrm{M}^{+}-\mathrm{S}, 4 \%\right), 372\left(\mathrm{M}^{+}-\mathrm{CS}_{2}, 2\right)$.

4: Colourless crystals; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.4-7.25(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}), 3.99$ and $3.70[(2 \mathrm{H}$, AB pattern of $\mathrm{d}, J=8$ and $2 \mathrm{~Hz}, \mathrm{C}(2)-\mathrm{H}, \mathrm{C}(6)-\mathrm{H}], 2.32(2 \mathrm{H}, \mathrm{m}), 1.95$ $(1 \mathrm{H}, \mathrm{m}), 1.6-1.5(2 \mathrm{H}, \mathrm{m})$ and $1.25-1.1(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 139.7$ [C(4)], 137.3 [$\mathrm{Ph} \mathrm{C}(1)], 128.1[\mathrm{Ph} \mathrm{C}(3), \mathrm{C}(5)], 127.5[\mathrm{Ph} \mathrm{C}(2), \mathrm{C}(6)]$, $125.7[\mathrm{Ph} \mathrm{C}(4)], 115.1(\mathrm{CHPh}), 63.6$ and $57.3[\mathrm{C}(2), \mathrm{C}(6)], 45.4$ and $45.2[\mathrm{C}(1), \mathrm{C}(7)], 32.1[\mathrm{C}(10)], 27.8$ and $27.5[\mathrm{C}(8), \mathrm{C}(9)]$; MS (70 $\mathrm{cV}): m / z 260\left(\mathrm{M}^{+}, 10 \%\right)$.

6a: Colourless crystals; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.4-7.2$ (m, $5 \mathrm{H} ; \mathrm{Ph}$), 6.62 (s, 1 $\mathrm{H} ; \mathrm{CHPh}), 4.20$ and $3.93[2 \mathrm{H}, \mathrm{AB}$ pattern of $\mathrm{d}, J=8$ and 2 Hz ,
$\mathrm{C}(2)-\mathrm{H}, \mathrm{C}(6)-\mathrm{H}], 3.6-3.5(2 \mathrm{H}, \mathrm{m}), 3.0-2.9(2 \mathrm{H}, \mathrm{m})$ and 2.38 and 1.67 $\left[2 \mathrm{H}, \mathrm{AB}\right.$ pattern, $\left.J=12 \mathrm{~Hz}, \mathrm{C}(10)-\mathrm{H}_{2}\right] ;{ }^{13} \mathrm{C}$ NMR: $\delta 170.8(\mathrm{CO})$, $137.5[\mathrm{C}(4)], 137.2[\mathrm{Ph} \mathrm{C}(1)], 128.9[\mathrm{Ph} \mathrm{C}(3), \mathrm{C}(5)], 128.5[\mathrm{Ph} \mathrm{C}(2)$. $\mathrm{C}(6)], 127.3[\mathrm{Ph} \mathrm{C}(4)], 118.9(\mathrm{CHPh}), 59.0$ and $53.1[\mathrm{C}(2), \mathrm{C}(6)]$, 49.3, 49.1 (2 C) and $48.9[\mathrm{C}(1), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9)]$ and $37.2[\mathrm{C}(10)] ; \mathrm{MS}$ (70 eV): $\mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}, 100 \%\right)$.
9: Colourless crystals; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.4-7.25(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.18(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.05$ and $3.77,4.03$ and $3.74[2 \mathrm{H}, \mathrm{AB}$ patterns for (E) - and (Z)-isomers, $J=8 \mathrm{~Hz}, \mathrm{C}(2)-\mathrm{H}, \mathrm{C}(6)-\mathrm{H}, \mathrm{C}(8)-\mathrm{H}, \mathrm{C}(12)-\mathrm{H}], 2.52$ $[2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1)-\mathrm{H}, \mathrm{C}(7)-\mathrm{H}]$ and $1.99\left[2 \mathrm{H}, \mathrm{m} \mathrm{C}(13)-\mathrm{H}_{2}\right] ;{ }^{13} \mathrm{C}$ NMR: δ (E)-isomer $139.7[\mathrm{C}(4), \mathrm{C}(10)], 137.1[\mathrm{Ph} \mathrm{C}(1)], 128.3[\mathrm{Ph} \mathrm{C}(3)$, $\mathrm{C}(5)], 127.9[\mathrm{Ph} \mathrm{C}(2), \mathrm{C}(6)], 126.4[\mathrm{Ph} \mathrm{C}(4)], 117.0(\mathrm{CHPh}), 61.4$ and $55.2[\mathrm{C}(2), \mathrm{C}(6), \mathrm{C}(8), \mathrm{C}(12)], 53.9[\mathrm{C}(1), \mathrm{C}(7)]$ and $27.0[\mathrm{C}(13)] ; \delta$ (Z)-isomer $138.2[\mathrm{C}(4), \mathrm{C}(10)], 137.1[\mathrm{Ph} \mathrm{C}(1)], 128.3[\mathrm{Ph} \mathrm{C}(3)$, $\mathrm{C}(5)], 127.9[\mathrm{Ph} \mathrm{C}(2), \mathrm{C}(6)], 126.4[\mathrm{Ph} \mathrm{C}(4)], 117.0(\mathrm{CHPh}), 61.2$ and $55.4[\mathrm{C}(2), \mathrm{C}(6), \mathrm{C}(8), \mathrm{C}(12)], 54.1$ and $53.6[\mathrm{C}(1), \mathrm{C}(7)]$ and 27.0 [C(13)]: MS $(70 \mathrm{eV}): m / z 424\left(\mathrm{M}^{+}, 75 \%\right)$.

References

1 A. W. Hofmann, Liebigs Ann. Chem. Suppl., 1861, 1, 1.
2 M. Sato, N. C. Gonella and M. P. Cava, J. Org. Chem., 1979, 44, 930.

3 C. Pittman and M. Narita, J. Chem. Soc., Chem. Commun., 1975, 960.

4 H. D. Hartzler, J. Am. Chem. Soc., 1971, 93, 4961
5 R. A. Aitken, G. Ferguson and S. V. Raut, J. Chem. Soc., Chem. Commun., 1991, 812; R. A. Aitken, S. V. Raut and G. Ferguson, Tetrahedron, 1992, 48, 8023.

