Selective Syntheses of Heterobinuclear Cobalt(III)–Nickel(II) and Cobalt(III)–Copper(II) Complexes with a Bimacrocyclic Ligand *via* 'Lariat Nickel(II) or Cobalt(III) Complexes'

Katsura Mochizuki,* Seiichiro Higashiya, Masaki Uyama and Tomoyo Kimura

Department of Chemistry, Yokohama City University, Yokohama 236, Japan

Heterobinuclear $Co^{(1)}$ – $Ni^{(1)}$ and $Co^{(1)}$ – $Cu^{(1)}$ complexes with bicyclam [6,6'-bis(1,4,8,11-tetraazacyclotetradecane)] L are selectively synthesized *via* a mononuclear nickel((1) or cobalt((1)) complex with bicyclam 'lariat nickel((1) or cobalt((1)) complexes'.

Although a number of homobinuclear complexes with bimacrocyclic ligands have been synthesized and characterized, only a few heterobinuclear complexes^{1,2} are known. Only the Cu^{II}–Ni^{II} complex has been reported with a bicyclam ligand.¹ During the synthesis of this Cu^{II}–Ni^{II} complex, dinickel(II) and dicopper(II) complexes are also formed because the complexation follows statistical rules and separation is necessary. We now report a useful method for the selective synthesis of heterobinuclear complexes by using a mononuclear Ni^{II} or Co^{III} complex with bicyclam 'lariat Ni^{II} or Co^{III} complexes' (Scheme 1).

The 'lariat Ni^{II} complex' 1† can easily incorporate a metal ion in its cavity. Fig. 1(*a*) shows the absorption spectral change during the course of the reaction between Cu^{2+} and complex 1 in aqueous solution. A new absorption band rapidly appeared at *ca*. 500–600 nm with no change in the absorption band due to the Ni^{II} complex. The final spectrum was essentially the same as that of the known Cu^{II} –Ni^{II} complex 6.¹ This change can be ascribed to the incorporation of Cu^{2+} into the open cavity of 1. The complexation proceeds quantitatively under the experimental conditions shown in Fig. 1. The reaction of 1 with Ni²⁺ affords the dinickel(n) complex 7.

This procedure of incorporating another metal ion enables us to prepare a heterobinuclear $Co^{III}-Ni^{II}$ complex 2. The complex 1 was treated with $CoCl_2$ in H_2O followed by oxidation with air. Addition of hydrochloric acid affords the chloride $[Co^{III}Cl_2Ni^{II}L]Cl_3 \cdot 3H_2O\ddagger$ as vellowish green needles. The isolated complex was not a mixture of dicobalt and dinickel complexes but the heterobinuclear complex, as confirmed by MS. The FAB-MS of the complex showed the $[M-Cl]^+$ peak at m/z = 657, of which the isotope splitting pattern practically agreed with the theoretical one [Fig. 2(a)]; peaks corresponding to dicobalt and dinickel complexes were not observed. The VIS absorption spectrum of the heterobinuclear complex has two absorption bands [$\lambda_{max} = 442 \text{ nm}$ $(\epsilon/dm^3 \text{ mol}^{-1} \text{ cm}^{-1} = 77), 618 (27); H_2O, 25 \circ C]$ and is very similar to the sum of the absorption spectra of the complex 1 and [Co^{III}₂Cl₄L]Cl₂.¶ The CV shows two waves ascribable to Ni^{II/III} $(E_{pc} = +0.59, E_{pa} = +0.67, E_{1/2} = +0.63$ V vs. Ag/AgCl in 0.2 mol dm⁻³ KCl, glassy carbon) and Co^{11/11} (E_{pc} = -0.07, $E_{pa} = +0.08$, $E_{1/2} = +0.01$ V), which are again similar to the sum of the CV of the complex 1 and $[Co^{III}_2Cl_4L]Cl_2.$

As the Co^{III} ion is much less reactive than the Ni^{II} ion, the use of an appropriate strong ligand should only remove the Ni^{II} ion from the complex. Indeed, treatment of complex **2** with NaCN yielded the mononuclear Co^{III} complex **3**, isolated as the perchlorate, $[Co^{III}(CN)_2LH_2](ClO_4)_3 \cdot 2H_2O_3]$ where one of the macrocycles encloses the Co^{III} ion and the other is protonated. The isotope splitting pattern of the FAB-MS (*m*/*z* = 709 [M–ClO₄]⁺) [Fig. 2(*b*)] and the elemental analysis confirmed the mononuclear Co^{III} complex. The diamagnetic

Fig. 1 Absorption spectral changes in the reactions of 1 mmol dm⁻³ $Cu(ClO_4)_2$ with (a) 1 mmol dm⁻³ 1 and (b) 1 mmol dm⁻¹ 3 in 0.1 mol dm⁻³ aqueous acetate buffer (pH = 4.1) at 26 °C

Fig. 2 The observed (upper) and theoretical (lower) mass peaks for (a) 2 $[M-Cl]^+$ and (b) 3 $[M-ClO_4]^+$

J. CHEM. SOC., CHEM. COMMUN., 1994

complex 3 shows the 12 expected signals (2 doublets and 10 triplets) in its ¹³C NMR spectrum, indicating each macrocycle is chemically unequivalent. The VIS absorption spectrum of 3 $[\lambda_{max} = 414 \text{ nm} (\varepsilon = 78), 317 (87), H_2O]$ is very similar to that

of [Co^{III}(CN)₂(cyclam)]ClO₄. incorporating another metal ion into its open cavity. The reactions of $\mathbf{3}$ with Cu(ClO₄)₂ and Ni(ClO₄)₂ almost quantitatively afford the heterobinuclear complexes 4 and 5 respectively, isolated as the perchlorates $[Co^{III}(CN)_2Cu^{II}L]$ - $(CIO_4)_3 \cdot 3H_2O^{**}$ and $[Co^{III}(CN)_2Ni^{II}L](CIO_4)_3 \cdot 3H_2O$.^{††} Fig. 1(b) shows the absorption spectral change during the course of the reaction between 3 and Cu^{2+} in aqueous solution. A similar change to that observed in the reaction of 1 with Cu²⁺ occurs at *ca*. 500–600 nm. The final spectrum $[\lambda_{max} = 502 \text{ nm} (\epsilon = 108), 419 (86), H_2O]$ as very similar to the sum of the spectra of complex 3 and $[Cu(cyclam)]^{2+,1}$ The ESR spectrum of 4 (DMF glass, 77 K) is typical of axial symmetry, with g_{\parallel} split by the hyperfine coupling constant into a quartet; it is practically identical to that of [Cu(cyclam)]^{2+,1}

Received, 2nd August 1994; Com. 4/04758C

Footnotes

† 1 was prepared from the reaction between L (5 mmol dm⁻³) and NiCl₂ (3.5 mmol dm⁻³) in aqueous solution. Purification by column chromatography with SP-Sephadex C-25, yielded the perchlorate (37%). FAB-MS: $[M-ClO_4]^+ m/z = 757$. VIS (H₂O, 25 °C): 452 nm ($\varepsilon = 40$). CV (Ag/AgCl, GC, 0.2 mol dm⁻³ KCl): Ni^{II/III}: $E_{pc} = +0.58$, $E_{pa} = +0.66$ V. The preliminary X-ray structure was obtained as well as that of the dinickel(u) complex 7.

‡ Although it is still unclear whether Cl- or H₂O coordinates to the Ni^{II} ion in the solid state of the isolated complex, the formula is provisionally used here.

§ The VIS absorption spectra of the Ni¹¹ complexes 1, 2, 5, 6 and 7 in water are temperature-dependent, because of the presence of an equilibrium between the square planar and water-coordinated octahedral Ni¹¹ species.

¶ The dicobalt(in) complex was prepared according to the similar method reported for [Co^{III}Cl₂(cyclam)]Cl.³ FAB-MS: [M–Cl)⁺ m/z = $\begin{array}{l} \text{(G3. VIS (H_2O): 626 nm ($\epsilon = 58$), 430 (85). CV (Ag/AgCl, GC, 0.2 mol dm^{-3} KCl): Co^{11/11}: E_{pc} = -0.10, E_{pa} = +0.05 \text{ V}. \\ \| \text{[Co^{111}(CN)_2(cyclam)]ClO_4 was prepared by the reaction of [Co^{111-1}]} \\ \end{array}$

 $Cl_2(cyclam)$ Cl with NaCN. FAB-MS: [M-ClO₄]+ m/z = 311. VIS (H_2O) : 412 nm (ϵ = 79), 315 (91).

** FAB-MS: $[M-ClO_4]$ + m/z = 772. †† FAB-MS: $[M-ClO_4]$ + m/z = 767. VIS (H₂O, 25 °C): 422 nm (ϵ = 101), 315 (95).

References

- 1 L. Fabbrizzi, L. Montagna, A. Poggi, T. A. Kaden and L. C. Sicgfried, Inorg. Chem., 1986, 25, 2672; J. Chem. Soc., Dalton Trans., 1987, 2631.
- 2 K. Mochizuki and Y. Endoh, Bull. Chem. Soc. Jpn., 1989, 62, 936; K. Mochizuki, A. Iijima, Y. Endoh and Y. Ikeda, Bull. Chem. Soc. Jpn., 1990, 63, 565.
- 3 B. Bosnich, C. K. Poon and M. L. Tobe, Inorg. Chem., 1965, 4, 1102.

2674