Photoaddition of Silyl Ketene Acetal to [GOIFullerene. Synthesis of a-Fullerene-substituted Carboxylic Esters

Hidetoshi Tokuyama, Hiroyuki lsobe and Eiichi Nakamura"

Department of Chemistry, Tokyo institute of Technology, Meguro, Tokyo 152, Japan

Photoaddition reaction of a silyl ketene acetal to [60]fullerene takes place at low temperature in wet toluene to afford α -fullerene-substituted carboxylic esters in good yields instead of the expected [2 + 2] cycloadduct.

Organofunctionalized [60]fullerenes play vital roles in fullerene science and technology, and there is an increasing demand for simple and practical synthetic entries to organofullerenes. Among a variety of fullerene derivatives thus far available, carboxylic acid derivatives represent an important class of compounds, for instance, in bioorganic research on fullerenes. 1.2 We report here that a carboxylic ester side chain can be introduced on to [60]fullerene by the reaction of a silyl ketene acetal **(KA)** under neutral photolytic conditions in wet toluene (Scheme 1). **A small** amount of water is indispensable and gives rise to the ester adduct **3** rather than the expected [2 + 21 cycloadduct **2,** which did not form either in the presence or absence of water.

We recently reported3 that a highly strained **KA 4** undergoes stepwise $[2 + 2]$ cycloaddition with [60]fullerene to give 5, whose C–C bond is cleaved upon heating in aqueous H_2SO_4 to give the ester **6** (Scheme 2). An unstrained counterpart **1** was found to be totally unreactive even under high pressure conditions. 3 Photolysis was expected⁴ to facilitate the reaction. Indeed, irradiation of a dry toluene solution of [6O]fullerene (0.01 mol dm⁻³) and 2 equiv. of 1 at 0 °C for 6 h promoted consumption of the starting materials to afford the ester **3** (variable yield, trace-20%), Scheme 1. The use of 4 equiv. of **1** increased the yield to *ca.* 40%, but further increases (10 equiv.) did not improve the yield due to the formation of side products. Even in the presence of excess

Scheme 1 *Reagents and conditions: i, toluene; ii, thermal (9 kbar), or* photo with or without H_2O ; iii, H_2O , hv

Scheme 2 *Reugents and conditions:* **i,** room temp.. toluene; **ii,** heat

KA, the photoconversion stopped after some time, leaving both starting materials unreacted.

In no cases could we detect the $[2 + 2]$ cycloadduct 2 in the reaction mixture and it was most likely that **3** was formed directly in the photoreaction. Since **3** formed also in 12- $Cl_2C_6H_4$ or CS_2 , H^* in 3 could not have come from the solvent (toluene), but must have come from water, which was found to be present in the reaction mixture $(1.4 \text{ mmol dm}^{-3}$ for [60]fullerene) at a 2.5–4 ppm level $(0.1–0.16 \text{ H}_2\text{O} : [60]$ fullerene). Realizing this fact, we carried out the reaction with 4 equiv. of 1 and 10 equiv. of H_2O to obtain 3 in a dramatically improved yield of 80% (Table 1, entry 1). There also formed in 14% yield a 2:1 adduct of C_1 symmetry, most probably due to the addition of two isobutyrate groups to the two adjacent double bonds in a six-membered ring with 1,3-disposition **of** two hydrogen atoms (δ 5.51 and 5.98, $J_{H-H} = 2$ Hz; CDCl₃). Such double addition, however, is sluggish as supported by an experiment wherein **3** was re-exposed to the reaction conditions. With the added water, the reaction became reproducible. The following simple photolysis procedure was employed in the subsequent studies.

A mixture of [60]fullerene (100 mg, 0.139 mmol), 1 (114 µJ, 0.555 mmol) and water $(25.0 \,\mu\text{J}, 1.39 \,\text{mmol})$ was dissolved in degassed toluene (100 mi), and irradiated for 10 h at *5* "C (internal temperature, ice cooling bath) with an immersion type 400 W high-pressure mercury lamp (Pyrex filter). The colour of the solution gradually turned from magenta to brown. Solvent and excess KA were removed *in vacuo* and the remaining solid product was chromatographed on silica gel to obtain the ester **3** in 47% yield (53.3 mg). Essentially the same experiment performed for 20 mg of [60]fullerene in 20 mi toluene using a merry-go-round setup gave **3** in 80% yield (18.3 mg).

The structural assignment of the adduct **3** rests on the spectral comparisons with related compounds.[†] The ¹H NMR spectrum of **3** displayed two singlets at **6** 2.30 and 6.67 due to the α -methyl groups and H^{*}, respectively. The assigned C_s structure was deduced from the presence of 25 sp? [60]ful-

Table 1 Photoaddition of silyl ketene acetal to [60]fullerene in wet toluene at 5 °C^a

Entry		KA (equiv.) H_2O (equiv.)	t/h	Product	Yield $(\%)$
	(4.0)	10.0	10	3	80
2	(4.0) 7	10.0	10	13	59
3	(4.0) 8	ca.0 ^b	10	13	\leq 3
$\overline{4}$	8(4.0)	3.0	10	13	40 ^c
5	8(4.0)	10.0	10	13	51d
6	$9(10.0)^c$	10.0	6	14	62
7	10(10.0)	10.0		14	7c
8	11(10.0)	10.0	4	15	541
9	12 (4.0)	10.0	4		0

 α The reaction was carried out with 20 mg of [60]fullerene in 20 ml of dry toluene as described in the text. Some recovery of [60]fullerene and the formation of multiadducts account for the material balance. $\frac{b}{b}$ The reaction was carried out in the presence of 4 Å molecular sieves. Yield was determined by NMR using an internal standard. *d* 72% yield based on recovered [60]fullerene. **A** 6:4 mixture of 0- and C-silylated ethyl acetate was used. *f* 65% yield based on recovered [60]fullerene.

lerene signals, of which three signals are due to four overlapping carbon atoms.

The effect of added water was further ascertained for the tert-butyldimethylsilyl (TBDMS) derivative of ethyl propionate **8** (Table 1, entries 3-5). Thus, in the presence of molecular sieves (4 Å) , essentially no reaction took place and 97% of [60]fullerene was recovered, the reaction in 'dry' toluene containing 0.19 equiv. of water afforded the adduct in 20% yield, and the yield increased to 40 and 51% in the presence of 3.0 and 10.0 equiv. **of** water, respectively. Trimethylsilyl (TMS) KA is more reactive than TBDMS **KA,** as is clearly seen for **9** and **10** (entry 6 vs. 7), where **10** was almost inert to [60]fullerene.

The reactivity of the **KA** increases as the number of electron-donating substituents on the olefin increases (entries 1-7). The KAs **9** and **10** derived from ethyl acetate were less reactive than **7** and **8** derived from ethyl propionate, which in turn were less reactive than **1** and **11.** The enol TMS ethers derived from pentan-3-one, acetophenone, and 2-methylcyclohexanone $(\Delta^{1,6}$ isomer) were unreactive. The electronrich but sterically hindered KA **12** was unreactive (entry 9).

There are *a priori* two reaction pathways possible for the present reaction (Scheme **3).** One involves a [2 + 21 cycloadduct **2,** and the other a zwitterionic species **17,** which is formed through a radical ion pair **16.** The active role of water in the photoaddition combined with the TMS/TBDMS-dependent reactivity difference indicates that the oxonium intermediate **17** is the direct precursor of the photoproduct **3,** which forms by water-assisted loss of the silyl group from **17.** The radical ion pair **16** is the most plausible precursor to **17,** in light

2754 **J. CHEM. SOC., CHEM. COMMUN., 1994**

of the high electron affinity of excited [60]fullerenes and the excellent single-electron donating ability of silyl **KA.6** The Rehm-Weller analysis⁷ of the reaction, however, suggests that **16** is formed only in minute quantities, as **16** is less stable by 10 kcal mol⁻¹ (1 cal = 4.184 J) than **4** and triplet $[60]$ fullerene. A free radical ion species is not involved in this reaction, since the photoreaction is not affected by the presence of a radical trap (6 equiv. TEMPO). The experimental facts do not exclude, however, the possibility that a minute quantity of **2** forms and undergoes photoassisted heterolytic C-C bond cleavage via **17.**

We thank the Ministry of Education, Science and Culture, Japan (the Grant-in-Aid for Scientific Research on Priority Area No. 06240217) for financial support. H. T. thanks JSPS for a predoctoral fellowship.

Received, *20th* September *1994; Corn. 4105731* G

Footnote

t *Physical properties* of fullerene ester 3: **Rf** 0.50 (50% toluene in hexane); IR v_{max}/cm^{-1} (CCl₄) 2970, 2930, 2850, 1740, 1260, 530; ¹H NMR (500 MHz, CS₂-CDCl₃) δ 2.32 (s, 6H, CCH₃), 4.10 (s, 3H, OCH₃), 6.68 (s, 1H, C₆₀H); ¹³C NMR (125 MHz, CS₂-CDCl₃) δ 23.98 70.60 (C₆₀), 125.17 (C₆₀, 2C), 128.10 (C₆₀, 2C), 128.87 (C₆₀, 2C), 136.29 (C₆₀ 2C), 136.99 (C₆₀, 2C), 138.87 (C₆₀, 2C), 140.22 (C₆₀, 4C), 141.30 ($\overline{C_{60}}$, 2C), 141.50 ($\overline{C_{60}}$, 2C), 141.96 ($\overline{C_{60}}$, 2C), 142.01 ($\overline{C_{60}}$, 2C), 142.51 (C_{60} , 2C), 143.11 (C_{60} , 2C), 144.30 (C_{60} , 2C), 144.63 (C_{60} , 2C), 145.16 ($\widetilde{C_{60}}$, 2C), 145.21 ($\widetilde{C_{60}}$, 4C), 145.32 ($\widetilde{C_{60}}$, 2C), 145.65 ($\widetilde{C_{60}}$, 2C), 145.98 (C₆₀, 2C), 146.06 (C₆₀, 2C), 146.24 (C₆₀, 2C), 146.75 (C₆₀), 147.04 (C₆₀, 4C), 147.37 (C₆₀), 152.46 (C₆₀, 2C), 153.82 (C₆₀, 2C), $(CH_3, 2C), 52.48 (C_{60}H), 53.01$ (quaternary carbon), 58.02 (OCH₃), 175.88 (C=O).

References

- **¹**H. Tokuyama, **S.** Yamago. **E.** Nakamura, T. Shiraki and Y. Sugiura, *J. Am. Chem. Soc.,* 1993, 115, 7918; A. Boutorine, H. Tokuyama, M. Takasugi, H. Isobe, E. Nakamura and C. Hélène, *Angew. Chem., Int. Ed. Engl..* in the press.
- 2 **S.** H. Friedman, D. L. Decamp. R. P. Sijbesma, G. Srdanov. G.Wudl and G. L. Kenyon, *J. Am. Chem. Soc.,* 1993, 115, 6506; R. Schinazi, R. Sijbesma. G. Srdanov, C. **L.** Hill and F. Wudl. *Antimicr. Ag. Chemother.,* 1993,37, 1707.
- 3 **S.** Yamago, A. Takeichi and E. Nakamura, *J. Am. Chem. Soc..* 1994, 116, 1123.
- 4 **X.** Zhang, A. Romero and C. S. Foote. *J. Am. Chem.* **Soc..** 1993. 115. 11024; T. Akasaka, W. Ando, K. Kobayashi and **S.** Nagase, *J. Am. Chem. Soc.,* 1993, 115, 10366.
- *5* **J.** W. Arbogast, A. P. Darmanyan. C. **S.** Foote, Y. Rubin, **F.** N. Diederich, M. M. Alvarez, **S.** J. Anz and R. L. Whetten, *J. Phys. Chem..* 1991, 95. 11; **J. W.** Arbogast, C. S. Foote and **M. Kao,** *J. Am. Chrm. Soc..* 1992, 114,2277.
- 6 **S.** Fukuzumi. M. Fujita, **J.** Otera and **Y.** Fujita, *J. Am. Chem. Soc.,* 1992, 114, 10271.
- 7 D. Rehm and **A.** Weller, *Isr. J. Chrm.,* 1970. **8,** 259.