Inverse Cycloheptatrienyl Sandwich Complexes. Crystal Structure of $[U(BH_4)_2(OC_4H_8)_5][(BH_4)_3U(\mu-\eta^7,\eta^7-C_7H_7)U(BH_4)_3]$

Thérèse Arliguie, Monique Lance, Martine Nierlich, Julien Vigner and Michel Ephritikhine

^a Laboratoire de Chimie de l'Uranium ^b Laboratoire de Cristallographie, Service de Chimie Moléculaire, CNRS URA 331, CEA CE Saclay, 91191 Gif sur Yvette, France

The anions $[X_3U(\mu-\eta^7,\eta^7-C_7H_7)UX_3]^-$ (X = NEt₂ or BH₄) have been obtained by treatment of UX₄ with K[C₇H₉]; the cation $[U(BH_4)_2(thf)_5]^+$ was formed by protonation of $[U(BH_4)_3(thf)_3]$ with $[NHEt_3][BPh_4]$ in tetrahydrofuran (thf).

An aromatic hydrocarbon ligand is capable of forming bonds to metals on both faces of its planar π -electron system and inverse sandwich compounds containing an $M(\mu-\eta^n,\eta^n-C_nH_n)M'$ unit are known for n = 5, 6 and 8.¹ Here we present the first examples of such complexes with n = 7: $[K(18-crown-6)][(NEt_2)_3U(\mu-\eta^7,\eta^7-C_7H_7)U(NEt_2)_3]$ 1 (18crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane) and $[U(BH_4)_2(OC_4H_8)_5][(BH_4)_3U(\mu-\eta^7,\eta^7-C_7H_7)U(BH_4)_3]$ 3. While the chemistry of the η -C₇H₇ compounds of the early transition metals has been considerably developed during the last ten years,² no cycloheptatrienyl complex of an f-element has been so far characterized.³

The $[(NEt_2)_3U(\mu-\eta^7,\eta^7-C_7H_7)U(NEt_2)_3]^-$ anion was formed in toluene (25 cm³) by treatment of the amide complex $[U(NEt_2)_4]$ (453 mg) with 1 equiv. of the potassium salt of the cycloheptadienyl anion; after stirring for 5 d at 65 °C, the precipitate was filtered off, extracted in thf and the brown powder of K[(NEt_2)_3U(\mu-\eta^7,\eta^7-C_7H_7)U(NEt_2)_3] (193 mg, 43%) was obtained after evaporation of the solvent. In the presence of 18-crown-6 (49 mg), brown crystals of 1 were isolated from thf-pentane {183 mg, 32% from [U(NEt_2)_4]}. The product was characterized by its elemental analyses (C, H, N. K) and ¹H NMR spectrum;[†] the narrow and well resolved resonances were characteristic of an uranium(iv) derivative, thus confirming that the formal charge of the C₇H₇ ligand is -3.4

Synthesis of K[(BH₄)₃U(μ - η ⁷, η ⁷-C₇H₇)U(BH₄)₃] **2** from $[U(BH_4)_4]$ and $K[C_7H_9]$ was impeded by the concomitant formation of $[U(BH_4)_3]$, resulting from the reduction of the uranium tetraborohydride by the potassium reagent; this obstacle was also encountered during the preparation of the $[U(\eta-dienyl)(BH_4)_3]$ complexes.⁵ The two products 2 and $[U(BH_4)_3(thf)_3]$, obtained in the ratio 40:60, presented similar solubilities and could not be separated; they were characterized only by their ¹H NMR spectra.[†] As we thought that the phosphine adduct $[U(BH_4)_3(dmpe)_2]^6$ (dmpe = $Me_2PCH_2CH_2PMe_2$) would be more soluble than $[U(BH_4)_3(thf)_3]$, we treated $[U(BH_4)_4]$ (157 mg) in diethyl ether (25 cm^3) with K[C₇H₉] (77 mg) in the presence of dmpe (176 μ l). The reaction mixture was stirred for 2 h at 20 °C, and after evaporation, the residue was extracted in thf; the solution was filtered and evaporated, leaving a brown powder (189 mg) containing the uranium trisborohydride (60%) and the desired product 2 (40%). This experiment was repeated about ten times and the proportion of 2 obtained varied from 25 to 40% (by NMR spectroscopy). During the attempted purification of 2, red crystals along with a beige powder were deposited from thf-pentane; X-ray crystal structure analysis revealed that these were in fact $[U(BH_4)_2(thf)_5][(BH_4)_3U$ - $(\mu - \eta^7, \eta^7 - C_7 H_7) U(BH_4)_3$ 3.‡

The crystals of **3** are composed of discrete cation-anion pairs. The inverse sandwich structure of the anion is shown in Fig. 1. The bridging C_7H_7 ligand and three BH_4 groups form a distorted tetrahedron around each uranium atom; the short U-B distances are characteristic of tridentate borohydride ligands.⁷ The average U-C bond distance is 2.69(2) Å and may be compared with those determined in $[U(\eta-C_5H_5)(BH_4)_3]^5$ [2.66(6) Å] and $[U(\eta-C_8H_8)(BH_4)_2(OPPh_3)]^8$ [2.68(2) Å]. The seven-membered ring is planar within ±0.02(3) Å and is parallel to the planes defined by the three boron atoms of each $U(BH_4)_3$ unit. The two uranium atoms are separated by 4.263(8) Å and the U(1)-ring centroid-U(2) axis is perpendicular to the cycloheptatrienyl plane. The ORTEP drawing of the cation is shown in Fig. 2. The uranium atom is in a quite perfect pentagonal-bipyramidal arrangement with the tridentate borohydride ligands in apical positions.

The cationic $U(BH_4)_2^+$ fragment was previously found inserted into the dicyclohexyl-(18-crown-6) ether (dcc), in the complex $[U(BH_4)_2(dcc)][UCl_5(BH_4)]$ which was obtained accidentally after partial oxidation of $[U_3(BH_4)_9(dcc)_2]$ in

Fig. 1 The X-ray crystal structure of the anion in 3. Only the important interatomic distances (Å) and angles (°) for one of the two independent anions in the assymetric unit are given: <U(1)-B> 2.58(2), <U(1)-C> 2.69(2), U(1)-Cen 2.14(3), <U(2)-B> 2.59(4), <U(2)-C> 2.67(2), U(2)-Cen 2.11(3), B(1)-U(1)-B(2) 96(1), B(1)-U(1)-B(3) 99(1), B(2)-U(1)-B(3) 97(1), B(1)-U(1)-Cen 121(1), B(3)-U(1)-Cen 120(1), B(4)-U(2)-B(5) 99(1), B(4)-U(2)-B(6) 95(1), B(5)-U(2)-Cen 120(1), B(4)-U(2)-Cen 121(1), B(5)-U(2)-Cen 120(1), B(6)-U(2)-Cen 120(1), U(1)-Cen 120(1), U(1)-Cen 120(1), U(1)-Cen 120(1), U(1)-Cen 120(1), U(2)-Cen 120(1), U(2)-Ce

Fig. 2 The X-ray crystal structure of the cation in 3. Only the important interatomic distances (Å) and angles (°) for one of the two independent cations in the assymetric unit are given: U(5)-B(13) 2.72(4), U(5)-B(14) 2.71(4), <U(5)-O> 2.56(1), B(13)-U(5)-B(14) 176(1), <B(13)-U(5)-O> 90(4), <B(14)-U(5)-O> 90(4), <O(n)-U(5)-O(n + 1)> 72(2).

dichloromethane.⁹ We found that the cation $[U(BH_4)_2(thf)_5]^+$ could be directly and easily synthesized in almost quantitative yield by protonation of $[U(BH_4)_3(thf)_3]$ (405 mg) with $[NHEt_3][BPh_4]$ (342 mg) in thf (25 cm³); after 1 h at 20 °C, the solution was evaporated, leaving brown microcrystals of $[U(BH_4)_2(thf)_5][BPh_4]$ 4. This complex was characterized by its elemental analyses (C, H, B) and ¹H NMR spectrum and its crystal structure¹⁰ showed that the geometrical parameters of the cation $[U(BH_4)_2(thf)_5]^+$ were identical in both compounds 3 and 4. Reaction of 4 with $K[C_5R_5]$ (R = H, Me) gave successively the neutral compounds $[U(C_5R_5)(BH_4)_2]$ and the anions $[U(C_5R_5)_2(BH_4)_2]^-$ (NMR experiments).^{5,11}

In conclusion, we have prepared the first inverse sandwich complexes with the C_7H_7 ligand and found an entry into the chemistry of the cycloheptatrienyl compounds of uranium. We have also described the synthesis of $[U(BH_4)_2(thf)_5]^+$, a very rare example of a uranium(11) cation.¹²

Received, 4th January 1994; Com. 4/00021H

Footnotes

† ¹*H NMR spectroscopic data* (60 MHz, 30 °C, $[{}^{2}H_{8}]$ thf, *J* in Hz: 1, δ 6.12 (24 H, q, *J* 6, CH₂), 3.23 (24 H, s, 18-crown-6), 1.49 (36 H, t, *J* 6, Me), -50.70 (7 H, s, C₇H₇); 2, δ 63.43 (24 H, q, *J* 85 Hz, BH₄), -47.57 (7 H, s, C₇H₇); 4, δ 13.9 (8 H, w_{2}^{1} 450 Hz, BH₄), 7.72, 6.91 (20 H, m, Ph).

‡ Crystal data for 3: C₂₇H₇₉B₈O₅U₃, triclinic, space group $P\overline{1}$, a = 12.754(8), b = 15.471(9), c = 24.136(8) Å, $\alpha = 98.99(8)$, $\beta = 96.35(8)$, $\gamma = 90.60(9)^\circ$, U = 4673(5) Å³, Z = 4, $D_c = 1.82$ g cm⁻³, $\mu = 98.62$ cm⁻¹, 20 max = 40 °. Diffraction data were recorded on an Enraf-Nonius CAD4 diffractometer using graphite-monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). 4216 reflections with $I > 3\sigma(I)$ were considered observed out of 8700 unique data collected. The structure was solved by the heavy-atom method and refined by full-matrix least squares (*F*) with anisotropic thermal parameters for U and O atoms; H atoms were not introduced. The final residuals were R = 0.037, $R_w = 0.042$ (w = 1). Atomic coordinates, bond lengths and angles and

thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- D. M. P. Mingos, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 3, ch. 19; J. Xia, Z. Lin and W. Chen, J. Chem. Soc., Chem. Commun., 1991, 1214; H. Schumann, J. Winterfeld, L. Esser and G. Kociok-Köhn, Angew. Chem., Int. Ed. Engl., 1993, 32, 1208 and references cited therein.
- 2 M. L. H. Green, P. Mountford, V. S. B. Mtetwa, P. Scott and S. J. Simpson, J. Chem. Soc., Chem. Commun., 1992, 314; M. L. H. Green, D. K. P. Ng and R. C. Tovey, J. Chem. Soc., Chem. Commun., 1992, 918; M. L. H. Green and D. K. P. Ng, J. Chem. Soc., Chem. Commun., 1992, 1116; M. L. H. Green, D. K. P. Ng and H. V. Wong, J. Chem. Soc., Dalton Trans., 1993, 3213; G. M. Diamond, M. L. H. Green, P. Mountford, N. M. Walker and J. A. K. Howard, J. Chem. Soc., Dalton Trans., 1992, 417; G. M. Diamond, M. L. H. Green, P. Mountford and N. M. Walker, J. Chem. Soc., Dalton Trans., 1991, 402, 85.
- 3 J. T. Miller and C. W. Dekock, J. Organomet. Chem., 1981, 216, 39.
- 4 C. E. Davies, I. M. Gardiner, J. C. Green, M. L. H. Green, N. J. Hazel, P. D. Grebenik, V. S. B. Mtetwa and K. Prout, J. Chem. Soc., Dalton Trans., 1985, 669.
- 5 D. Baudry, E. Bulot, P. Charpin, M. Ephritikhine, M. Lance, M. Nierlich and J. Vigner, J. Organomet. Chem., 1989, **371**, 163; D. Baudry, E. Bulot and M. Ephritikhine, J. Organomet. Chem., 1990, **397**, 169.
- 6 H. J. Wasserman, D. C. Moody and R. R. Ryan, J. Chem. Soc., Chem. Commun., 1984, 532.
 - T. J. Marks and J. R. Kolb, Chem. Rev., 1977, 77, 263.
- 8 D. Baudry, E. Bulot, M. Ephritikhine, M. Nierlich, M. Lance and J. Vigner, J. Organomet. Chem., 1990, **388**, 279.
- 9 A. Dejean, P. Charpin, G. Folcher, P. Rigny, A. Navaza and G. Tsoucaris, *Polyhedron*, 1987, 6, 189.
- 10 T. Arliguie, M. Ephritikhine, M. Lance, M. Nierlich and J. Vigner, unpublished work.
- 11 P. Gradoz, D. Baudry, M. Ephritikhine, M. Lance, M. Nierlich and J. Vigner, J. Organomet. Chem., 1944, 466, 107.
- 12 D. Baudry, E. Bulot and M. Ephritikhine, J. Chem. Soc., Chem. Commun., 1989, 1316.