Synthesis, Molecular and Electronic Structure of Complexes [LNaMlvNaL] (M=Ru,Os; H3L = **1,4,7-tris(4-tert-butyl-2-mercaptobenzyl)~l,4,7~triazacyclononane)**

Katsura Mochizuki, ^a Frank Kesting, a Thomas Weyhermüller, a Karl Wieghardt, * a Christian Butzlaff *b* and Alfred X. Trautwein^b

a Lehrstuhl fur Anorganische Chemie 1, Ruhr-Universitat, 0-44780 Bochum, Germany ^blnstitut fur Ph ysik, Medizinische Universitat, **0-23538** *Liibeck, Germany*

The trinuclear complexes [LNaMlvNaL] (M = Ru 1, *0s* 2) where L represents the hexadentate ligand 1,4,7-tris(4-tert**butyl-2-mercaptobenzyl)-l,4,7-triazacyclononane** have been synthesized and 1 has been characterized by X-ray crystallography; complex 1 contains an octahedral **M'VS6** central core and **two** trigonal-prismatic terminal LNa units with an N₃S₃ donor set; the electronic structure of the M^{IV}S₆ core (M = Ru, Os), has been established as S = 1 by temperature-dependent magnetic susceptibility measurements.

Recently we have begun to explore the coordination chemistry of the hexadentate macrocycle **1,4,7-tris(4-tert-buty1-2-mercaptobenzyl)-1,4,7-triazacyclononane** (H3L) with trivalent first-row transition-metal ions.¹ This ligand forms a very stable iron(III) complex, [Fe^{III}L], with an octahedral N_3S_3 donor set.

Cyclic voltammetry revealed that [FeIIL] undergoes a reversible one-electron oxidation at -0.215 V *vs.* ferroceneferrocenium (Fc-Fc+) yielding the monocation [FeL]+ . Attempts to isolate salts of this cation failed at that time and the question remained open whether this one-electron oxidation is metal-centred yielding Fe'V or if the coordinated ligand is oxidized. Therefore, we decided to synthesize the corresponding complex [Ru^{III}L] and its oxidized form as crystalline solids. The species $[RuL]^+$ is anticipated to be *paramagnetic* if an octahedral Ru^{IV} species is formed $(S = 1)$ or, alternatively, to be diamagnetic due to antiferromagnetic coupling between a ruthenium (iii) ion and a coordinated sulfur radical. In the course of the synthesis we encountered an unexpected preparative result which led to the isolation of novel ruthenium(iv) complex containing a Ru^{IV}S₆ core.

When a methanolic reaction mixture of the trisodium salt of the ligand, Na₃L, and $\left[\text{Ru}^{II}(\text{dmos})_{4}Cl_{2}\right](\text{dms}) = \text{dimethyl}$ sulfoxide) in the ratio 2:1 was heated to reflux under anaerobic conditions and was then exposed to air a red-black precipitate was obtained. After column chromatography of a $CH₂Cl₂$ solution two crystalline species were obtained: redblack [LNaRu^{IV}NaL]CH₂Cl₂·MeOH·2H₂O 1 and blue [Ru"*L]. **j-**

The green complex [LNaOsIVNaL] **2** was obtained in a similar fashion by reaction of $K_2[Os^{IV}Cl₆]$ and Na₃L in methanol. In this case the presence of [OsIIIL] was not detectable. Fast atom bombardement mass spectrometry of 1 and **2** in a m-nitrobenzylalcohol matrix revealed the molecular-ion peaks at mlz 1468.5 for 1 and at 1558.5 for **2** which display the expected isotope distributions due to Ru and **0s** isotopes. The electronic spectra of solutions of 1 in $CH₂Cl₂$ and **2** in CHC13 display many absorption maxima in the visible and near infrared region: $1\,274\,$ nm $(\epsilon = 5.7 \times 10^4\,$ dm3 mol-1 cm-l), 538 (5.2 x 1@), 646 **(1.7** x lO3), 952 (1.03 x lO4), 1187 (6.6 x 103) 1300 (sh); **2** 314 (4.8 **x** 104), 409 (4.9 \times 10³), 435 (sh), 452 (4.8 \times 10³), 484 (4.8 \times 10³), 546 (3.0 \times 103), 649 (6.05 X lO3), 817 (2.4 **x** 104), lo00 (sh), 1705 (880), 1860 (1.2 \times 10³).

Fig. 1 shows the structure of the trinuclear neutral molecule in crystals of 1. \ddagger It consists of two sodium ions each in an N₃S₃donor set provided by the ligand L^{3-} and a central ruthenium(IV) coordinated to six bridging thiolate sulfur donor atoms. The neutral molecule may be perceived as composed of two $[NaL]^2$ ⁻ units which bind a $Ru^{1}V$ ion *via* two facial S₃donor sets. Interestingly, the $N_3S_3N_4$ polyhedron is trigonal prismatic whereas the RuS_6 core is octahedral. The average Na-N distance is the shortest reported to date for sodium polyamine complexes.2 The stereochemistry at the Na+ ions is dictated by the steric requirements of the ligand $L³$ whereas the low-spin t_{2g}^4 electronic configuration of the six coordinate Ru^{IV}-ion favours an octahedral over a trigonal-prismatic arrangement (ligand field stabilization energy). Note that in a recently reported similar structure of $[(\text{thf})_3\text{Na}(\mu\text{-SR})_3\text{U}^{\text{IV}}(\mu\text{-SR})_3]$ SR)₃Na(thf)₃]³ (R = tert-butyl, phenyl) the sodium ions are in an octahedral environment of three oxygen and three sulfur donor atoms. The structure of **2** is probably very similar to that of 1.

Fig. 2 displays the cyclic voltammograms of 1 and **²** recorded in CH_2Cl_2 and $CHCl_3$, respectively. Both species exhibit a reversible one-electron oxidation and a reversible one-electron reduction as was judged from coulometric

Fig. 1 Structure of the neutral complex in crystals of 1 *(a)* **and geometry** of **metal** ion **polyhedra** *(b).* **Selected average bond distances** (A) **and angles** *(O):* Ru-S 2.414(2), **Na-S** 2.751(5), **Na-N** 2.374(8), Ru(1). **..Na(** 1) 3.352(4), Ru. - **mNa(2)** 3.348(3), **S(** 1)-Ru-S(2) 89.4(1) , S(2)-Ru-S(3) 88.7(1), S(2)-Ru-S(4) 82.7(1), S(l)-Ru-S(S) **lOO.l(l),** $S(3)$ -Ru-S(5) 84.0(1), $S(1)$ -Ru-S(6) 82.5(1), S(3)-Ru-S(6) 167.7(1), **S(3)-Ru-S(3) 84.0(1), S(1)-Ru-S(0) 82.3(1), S(3)-Ru-S(0) 107.7(1),**
S(5)-Ru-S(6) 88.5(1), S(1)-Ru-S(3) 89.2(1), S(1)-Ru-S(4) 167.2(1),
S(3)-Ru-S(4) 100.7(1), S(2)-Ru-S(5) 167.9(1), S(4)-Ru-S(5) $89.1(1), S(2)-Ru-S(6) 100.2(1), S(4)-Ru-S(6) 89.0(1).$

measurements at appropriately fixed potentials. The reduction wave most probably involves a metal-centred reduction yielding the negatively charged species $[LMaM^{III}NaL]$ ⁻ (M = Ru, 0s) whereas the oxidation to the cationic species [LNaMNaL]⁺ may be metal-centred (Ru^V , Os^V) or involve one-electron oxidation of the ligand.

Fig. 3 shows the temperature dependent (2-300K) magnetic susceptibility (SQUID-magnetometer, applied field 1T), and effective magnetic moments of powdered samples of 1 and 2. At elevated temperatures the magnetic moments of 1 approaches the value of *ca*. 3.0 μ _B which is typical for a d⁴ ion with t_{te}⁴ ($S = 1$) electronic configuration. At lower temperatures the magnetic moments drop significantly until a nearly diamagnetic ground state is reached. For **2** a nearly temperature-independent paramagnetism is observed from which effective magnetic moments of *ca*. 2.0 μ B at room temp. *ca*. and of 0.5 μ_B at 10 K are calculated.

Fig. 2 Cyclic voltammograms of 1 $(--)$ and 2 $(---)$ recorded in $CH₂Cl₂$ using a Pt-electrode and CHCl₃ solution using a glassy carbon electrode, respectively, at a scan rate of 100 mV **s-l.** Potentials are referenced *vs.* a Ag-AgCl (saturated LiCl;C₂H₅OH) electrode (conditions: [complex] *ca.* 10^{-4} mol dm⁻³, 0.10 mol dm⁻³ [NBu₄]PF₆ supporting electrolyte).

Fig. **3** Temperature dependence of the magnetic moment *(a)* and magnetic susceptibility (b) of 1 and 2. The solid lines represent best fits (see text).

910 J. CHEM. SOC., CHEM. COMMUN., 1994

Following the analysis of Oosterhuis and Lang4 for a complete description of the electronic structure within the t_{2g} ⁴ configuration, an axial and rhombic perturbation, V_k , of the crystal-field, spin-orbit coupling and the Zeeman interaction with an applied magnetic field \tilde{H} has to be taken into account where ξ is the spin-orbit coupling constant, eqn. (1).

$$
\mathcal{H}_1 = \sum_{k=1}^{4} V_k + \xi \sum_{k=1}^{4} \vec{l}_k \vec{s}_k + \mu_\text{B} \vec{H} \sum_{k=1}^{4} (\vec{l}_k + 2\vec{s}_k)
$$
 (1)

The four-electron problem (t_{2g}^4) can be described by a twohole problem giving the following Hamilton [eqn. (2)].⁵

$$
\mathcal{H}_2 = -\sum_{k=1}^2 V_k - \xi \sum_{k=1}^2 \vec{l}_k \vec{s}_k + \mu_\text{B} \vec{H} \sum_{k=1}^2 (\vec{l}_k + 2\vec{s}_k)
$$
 (2)

The energies Δ and V represent the influence of the axial and rhombic crystal field. A positive value for Δ leads to an orbital-singlet as ground state. The above lying orbital doublet is split by V . We have fitted the experimental data (Fig. 3) with parameters Δ , V and ξ for 1 and 2. In both cases the fit was not sensitive to V . Therefore, V was set to 0 cm^{-1} . For 1 and excellent the was obtained with values obtained $\xi = 1586$ cm⁻¹ and $\Delta = 4782$ cm⁻¹. The spin-orbit coupling constant agrees very well with a value of ca . 1600 cmreported for other ruthenium(1v) complexes.6 A good fit for **2** was obtained when ξ was fixed to 6400 cm⁻¹ a value typically found for osmium(IV)⁷ and $\Delta = 14220 \text{ cm}^{-1}$. Such a large spinorbit coupling constant leads to a temperature-independent susceptibility in the temperature range 2-300 K as is observed. Thus the magnetic data nicely corroborate the assignment of a t_{tg}^{4} (S = 1) electronic configuration of Ru^{IV} and Os^{IV} in 1 and **2.**

It should be noted that some seven-coordinate ruthenium(1v) complexes of the type $[Ru^{\dagger}V(R_2dtc)_3](I_3)$ ($R = Me$, Et, CH_2Ph ; dtc = N , N -disubstituted dithiocarbamate) and $[Ru^{IV}(R₂dtc)₃]$ Cl containing a distorted pentagonal-bipyramidal RuS₆X (X = I, Cl) core have been reported to be diamagnetic with an $S = 0$ ground state.⁷

In a subsequent paper we will describe the synthesis and characterization of the analogous trinuclear [LRuRuRuL]2+ and the mononuclear species $[M^{HII}][M = Ru, Os]$ which shows that the sodium cations in 1 and 2 are readily replaced by other transition-metal ions.

Received, 21st January 1994; Corn. 41004026

Footnotes

t The complex [RuIIIL] has been fully characterized. The results will be reported elsewhere.

 \ddagger *Crystal data* for 1: C₈₀H₁₁₈Cl₂N₆Na₂O₃RuS₆; monoclinic, space group $P2_1$, $a = 14.217(3)$, $b = 19.705(4)$, $c = 15.071(3)$ Å, $\beta =$ $103.11(3)$ ^o, *U* = 4112.3(15) Å³, *Z* = 2, *D_c* = 1.310 g cm⁻³. A Siemens P4 diffractometer and Mo-K α radiation (graphite monochromator) was used at 163 K. 8647 Reflections were collected $(3 \le 2\theta \le 52^{\circ})$, of which 6805 unique data $F \geq 4.0\sigma(F)$ were used in refinement. The structure was solved by direct methods; the hydrogen atoms were included with calculated positions with fixed isotopic thermal parameters; all other atoms with anisotropic thermal parameters. Leastsquares full-matrix refinement converted to final agreement factors of $R = 0.055$ and $R_w = 0.056$ for 884 parameters.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 T. Beissel, K. **S.** Burger, G. Voigt, K. Wieghardt, C. Butzlaff and A. X. Trautwein, *Inorg.* Chem., 1993, **32,** 124.
- 2 Cation *Binding by Macrocycles,* ed. Y. Inoue and G. W. Gokel, M. Dekker, New York, 1990.

J. CHEM. SOC., CHEM. COMMUN., 1994 911

- 3 P. **C.** Leverd, M. Lance, M. Nierlich, J. Vigner and M. *Principles and Methods,* ed. J. Lewis and R. G. Wilkins, Ephritikhine, J. *Chem.* **SOC.,** *Dalton Trans.,* 1993, 2251.
-
- University Press, England, 1961.
- 6 B. N. Figgis and J. Lewis, in *Modern Coordination Chemistry,*

Principles and Methods, ed. J. Lewis and R. G. Wilkins,
Interscience New York, 1960.

4 W. T. Oosterhuis and G. Lang, J. Chem. Phys., 1973, 58, 4757.
5 J. S. Griffith, *The Theory of Transition-Metal Ions*, Cambridge K. W. Given, B. M. Mattson and L. H. Pignolet, *Inorg. Chem.*, 1976, **15,** 3152.

Typeset and printed by Black Bear Press Limited, Cambridge, England