Synthesis, Molecular and Electronic Structure of Complexes [LNaM^{IV}NaL] (M=Ru,Os; $H_3L = 1,4,7$ -tris(4-*tert*-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane)

Katsura Mochizuki, ^a Frank Kesting, ^a Thomas Weyhermüller, ^a Karl Wieghardt, * ^a Christian Butzlaff^b and Alfred X. Trautwein^b

^a Lehrstuhl für Anorganische Chemie I, Ruhr-Universität, D-44780 Bochum, Germany^b Institut für Physik, Medizinische Universität, D-23538 Lübeck, Germany

The trinuclear complexes [LNaM^{IV}NaL] (M = Ru 1, Os 2) where L represents the hexadentate ligand 1,4,7-tris(4-*tert*butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane have been synthesized and 1 has been characterized by X-ray crystallography; complex 1 contains an octahedral $M^{IV}S_6$ central core and two trigonal-prismatic terminal LNa units with an N₃S₃ donor set; the electronic structure of the $M^{IV}S_6$ core (M = Ru, Os), has been established as S = 1 by temperature-dependent magnetic susceptibility measurements.

Recently we have begun to explore the coordination chemistry of the hexadentate macrocycle 1,4,7-tris(4-*tert*-butyl-2-mer-captobenzyl)-1,4,7-triazacyclononane (H₃L) with trivalent first-row transition-metal ions.¹ This ligand forms a very stable iron(III) complex, [Fe^{III}L], with an octahedral N₃S₃ donor set.

Cyclic voltammetry revealed that [FeIIIL] undergoes a reversible one-electron oxidation at -0.215 V vs. ferroceneferrocenium (Fc-Fc⁺) yielding the monocation $[FeL]^+$. Attempts to isolate salts of this cation failed at that time and the question remained open whether this one-electron oxidation is metal-centred yielding Fe^{IV} or if the coordinated ligand is oxidized. Therefore, we decided to synthesize the corresponding complex [RuIIL] and its oxidized form as crystalline solids. The species [RuL]⁺ is anticipated to be *paramagnetic* if an octahedral Ru^{IV} species is formed (S = 1) or, alternatively, to be *diamagnetic* due to antiferromagnetic coupling between a ruthenium(III) ion and a coordinated sulfur radical. In the course of the synthesis we encountered an unexpected preparative result which led to the isolation of novel ruthenium(IV) complex containing a Ru^{IV}S₆ core.

When a methanolic reaction mixture of the trisodium salt of the ligand, Na₃L, and [Ru^{II}(dmso)₄Cl₂](dmso = dimethyl sulfoxide) in the ratio 2:1 was heated to reflux under anaerobic conditions and was then exposed to air a red-black precipitate was obtained. After column chromatography of a CH₂Cl₂ solution two crystalline species were obtained: redblack [LNaRu^{IV}NaL]CH₂Cl₂·MeOH·2H₂O 1 and blue [Ru^{III}L].[†]

The green complex [LNaOs^{IV}NaL] **2** was obtained in a similar fashion by reaction of $K_2[Os^{IV}Cl_6]$ and Na₃L in methanol. In this case the presence of $[Os^{III}L]$ was not detectable. Fast atom bombardement mass spectrometry of **1** and **2** in a *m*-nitrobenzylalcohol matrix revealed the molecular-ion peaks at m/z 1468.5 for **1** and at 1558.5 for **2** which display the expected isotope distributions due to Ru and Os isotopes. The electronic spectra of solutions of **1** in CH₂Cl₂ and **2** in CHCl₃ display many absorption maxima in the visible and near infrared region: **1** 274 nm ($\varepsilon = 5.7 \times 10^4$ dm³ mol⁻¹ cm⁻¹), 538 (5.2 × 10³), 646 (1.7 × 10³), 952 (1.03 × 10⁴), 1187 (6.6 × 10³) 1300 (sh); **2** 314 (4.8 × 10⁴), 409 (4.9 × 10³), 435 (sh), 452 (4.8 × 10³), 484 (4.8 × 10³), 546 (3.0 × 10³), 649 (6.05 × 10³), 817 (2.4 × 10⁴), 1000 (sh), 1705 (880), 1860 (1.2 × 10³).

Fig. 1 shows the structure of the trinuclear neutral molecule in crystals of 1.[‡] It consists of two sodium ions each in an N₃S₃donor set provided by the ligand L³⁻ and a central ruthenium(IV) coordinated to six bridging thiolate sulfur donor atoms. The neutral molecule may be perceived as composed of two [NaL]²⁻ units which bind a Ru^{IV} ion *via* two facial S₃donor sets. Interestingly, the N₃S₃Na polyhedron is trigonal prismatic whereas the RuS₆ core is octahedral. The average Na–N distance is the shortest reported to date for sodium polyamine complexes.² The stereochemistry at the Na⁺ ions is dictated by the steric requirements of the ligand L³⁻ whereas the low-spin t_{2g}⁴ electronic configuration of the six coordinate Ru^{IV}-ion favours an octahedral over a trigonal-prismatic arrangement (ligand field stabilization energy). Note that in a recently reported similar structure of $[(thf)_3Na(\mu-SR)_3U^{IV}(\mu-SR)_3Na(thf)_3]^3$ (R = tert-butyl, phenyl) the sodium ions are in an octahedral environment of three oxygen and three sulfur donor atoms. The structure of 2 is probably very similar to that of 1.

Fig. 2 displays the cyclic voltammograms of 1 and 2 recorded in CH_2Cl_2 and $CHCl_3$, respectively. Both species exhibit a reversible one-electron oxidation and a reversible one-electron reduction as was judged from coulometric

Fig. 1 Structure of the neutral complex in crystals of 1 (a) and geometry of metal ion polyhedra (b). Selected average bond distances (Å) and angles (°): Ru-S 2.414(2), Na-S 2.751(5), Na-N 2.374(8), Ru(1)…Na(1) 3.352(4), Ru(-Na(2) 3.348(3), S(1)-Ru-S(2) 89.4(1), S(2)-Ru-S(3) 88.7(1), S(2)-Ru-S(4) 82.7(1), S(1)-Ru-S(5) 100.1(1), S(3)-Ru-S(5) 84.0(1), S(1)-Ru-S(6) 82.5(1), S(3)-Ru-S(6) 167.7(1), S(5)-Ru-S(6) 88.5(1), S(1)-Ru-S(3) 89.2(1), S(1)-Ru-S(4) 167.2(1), S(3)-Ru-S(4) 100.7(1), S(2)-Ru-S(5) 167.9(1), S(4)-Ru-S(5) 89.1(1), S(2)-Ru-S(6) 100.2(1), S(4)-Ru-S(6) 89.0(1).

measurements at appropriately fixed potentials. The reduction wave most probably involves a metal-centred reduction yielding the negatively charged species $[LNaM^{III}NaL]^-$ (M = Ru, Os) whereas the oxidation to the cationic species $[LNaMNaL]^+$ may be metal-centred (Ru^V, Os^V) or involve one-electron oxidation of the ligand.

Fig. 3 shows the temperature dependent (2–300K) magnetic susceptibility (SQUID-magnetometer, applied field 1T), and effective magnetic moments of powdered samples of 1 and 2. At elevated temperatures the magnetic moments of 1 approaches the value of *ca*. 3.0 μ_B which is typical for a d⁴ ion with t_{tg}⁴ (S = 1) electronic configuration. At lower temperatures the magnetic ground state is reached. For 2 a nearly temperature-independent paramagnetism is observed from which effective magnetic moments of *ca*. 2.0 μ_B at room temp. *ca*. and of 0.5 μ_B at 10 K are calculated.

Fig. 2 Cyclic voltammograms of 1 (---) and 2 (-----) recorded in CH_2Cl_2 using a Pt-electrode and $CHCl_3$ solution using a glassy carbon electrode, respectively, at a scan rate of 100 mV s⁻¹. Potentials are referenced vs. a Ag-AgCl (saturated LiCl;C₂H₅OH) electrode (conditions: [complex] ca. 10⁻⁴ mol dm⁻³, 0.10 mol dm⁻³ [NBu₄]PF₆ supporting electrolyte).

Fig. 3 Temperature dependence of the magnetic moment (a) and magnetic susceptibility (b) of 1 and 2. The solid lines represent best fits (see text).

J. CHEM. SOC., CHEM. COMMUN., 1994

Following the analysis of Oosterhuis and Lang⁴ for a complete description of the electronic structure within the t_{2g}^4 configuration, an axial and rhombic perturbation, V_k , of the crystal-field, spin-orbit coupling and the Zeeman interaction with an applied magnetic field *H* has to be taken into account where ξ is the spin-orbit coupling constant, eqn. (1).

$$\mathscr{H}_{1} = \sum_{k=1}^{4} V_{k} + \xi \sum_{k=1}^{4} \vec{l}_{k} \vec{s}_{k} + \mu_{B} \vec{H} \sum_{k=1}^{4} (\vec{l}_{k} + 2\vec{s}_{k})$$
(1)

The four-electron problem (t_{2g}^4) can be described by a twohole problem giving the following Hamilton [eqn. (2)].⁵

$$\mathcal{H}_{2} = -\sum_{k=1}^{2} V_{k} - \xi \sum_{k=1}^{2} \vec{l}_{k} \vec{s}_{k} + \mu_{B} \vec{H} \sum_{k=1}^{2} (\vec{l}_{k} + 2\vec{s}_{k}) \quad (2)$$

The energies Δ and V represent the influence of the axial and rhombic crystal field. A positive value for Δ leads to an orbital-singlet as ground state. The above lying orbital doublet is split by V. We have fitted the experimental data (Fig. 3) with parameters Δ , V and ξ for 1 and 2. In both cases the fit was not sensitive to V. Therefore, V was set to 0 cm^{-1} . For 1 an values excellent fit was obtained with $\xi = 1586$ cm⁻¹ and $\Delta = 4782$ cm⁻¹. The spin-orbit coupling constant agrees very well with a value of ca. 1600 cm⁻ reported for other ruthenium(IV) complexes.⁶ A good fit for 2 was obtained when ξ was fixed to 6400 cm⁻¹ a value typically found for osmium(IV)⁷ and $\Delta = 14220$ cm⁻¹. Such a large spinorbit coupling constant leads to a temperature-independent susceptibility in the temperature range 2-300 K as is observed. Thus the magnetic data nicely corroborate the assignment of a t_{tg}^4 (S = 1) electronic configuration of Ru^{IV} and Os^{IV} in 1 and 2

It should be noted that some seven-coordinate ruthenium(IV) complexes of the type $[Ru^{IV}(R_2dtc)_3](I_3)$ (R = Me, Et, CH₂Ph; dtc = *N*,*N*-disubstituted dithiocarbamate) and $[Ru^{IV}(R_2dtc)_3]$ Cl containing a distorted pentagonal-bipyramidal RuS₆X (X = I, Cl) core have been reported to be diamagnetic with an *S* = 0 ground state.⁷

In a subsequent paper we will describe the synthesis and characterization of the analogous trinuclear [LRuRuRuL]²⁺ and the mononuclear species [$M^{111}L$] (M = Ru, Os) which shows that the sodium cations in 1 and 2 are readily replaced by other transition-metal ions.

Received, 21st January 1994; Com. 4/00402G

Footnotes

[†] The complex [Ru^{III}L] has been fully characterized. The results will be reported elsewhere.

‡ Crystal data for 1: C₈₀H₁₁₈Cl₂N₆Na₂O₃RuS₆; monoclinic, space group P2₁, a = 14.217(3), b = 19.705(4), c = 15.071(3) Å, $\beta = 103.11(3)^\circ$, U = 4112.3(15) Å³, Z = 2, $D_c = 1.310$ g cm⁻³. A Siemens P4 diffractometer and Mo-Kα radiation (graphite monochromator) was used at 163 K. 8647 Reflections were collected ($3 \le 2\theta \le 52^\circ$), of which 6805 unique data $F \ge 4.0\sigma(F)$ were used in refinement. The structure was solved by direct methods; the hydrogen atoms were included with calculated positions with fixed isotopic thermal parameters; all other atoms with anisotropic thermal parameters. Least-squares full-matrix refinement converted to final agreement factors of R = 0.055 and $R_w = 0.056$ for 884 parameters.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 T. Beissel, K. S. Bürger, G. Voigt, K. Wieghardt, C. Butzlaff and A. X. Trautwein, *Inorg. Chem.*, 1993, **32**, 124.
- 2 Cation Binding by Macrocycles, ed. Y. Inoue and G. W. Gokel, M. Dekker, New York, 1990.

J. CHEM. SOC., CHEM. COMMUN., 1994

- 3 P. C. Leverd, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine, J. Chem. Soc., Dalton Trans., 1993, 2251.
 4 W. T. Oosterhuis and G. Lang, J. Chem. Phys., 1973, 58, 4757.
 5 J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, England, 1961.
 6 B. N. Eigeis and L. Lewis in Modern Coordination Chamintary.

- 6 B. N. Figgis and J. Lewis, in Modern Coordination Chemistry,

Principles and Methods, ed. J. Lewis and R. G. Wilkins, Interscience New York, 1960.

7 B. M. Mattson and L. H. Pignolet, *Inorg. Chem.*, 1977, 16, 488;
K. W. Given, B. M. Mattson and L. H. Pignolet, *Inorg. Chem.*, 1976, 15, 3152.

Typeset and printed by Black Bear Press Limited, Cambridge, England