Electron Transfer from Quinone and Nitroarene Anion Radicals to Molecular Oxygen Studied by the Potential-step Chronocoulometry Method

Kiyoshi Fukuhara, Yukie Hara and Naoki Miyata

Division of Organic Chemistry, National Institute of Health Sciences, Tokyo, 158, Japan

Catalytic activity of quinones and nitroarenes, as mediators in the reductive activation of molecular oxygen, can be evaluated by using potential-step chronocoulometry.

Reaction of active oxygen species with biomolecules is thought to be responsible for oxidative cytotoxicity. One of the most critical reactions in vivo for the generation of active oxygen species is the formation of superoxide anion radical $(O_2 \cdot -)$ by one-electron reduction of molecular oxygen (O_2) .¹ Other active oxygen species, such as hydroxyl radical, hydroperoxide, etc., are formed via O2.-. Well known oneelectron reductants of O₂ are anion radicals. Semiquinone anion radicals (SQ \cdot -) are readily oxidized to quinones under aerobic conditions accompanied by the formation of $O_2 \cdot - .^2$ The O_2 .⁻ is also generated by the interaction of nitroarene anion radicals (NA \cdot ⁻) and O₂.³ Further reduction of NA \cdot ⁻ by nitroreductase to mutagenic and carcinogenic nitroso and then hydroxylamino derivatives is thus inhibited by O₂.⁴ We have already clarified that the reaction of anion radicals with O₂ is directly detectable by the potential-step chronocoulometry (PSCC) technique.⁵ The purpose of the present investigation is to establish a chemical basis the ability of formation of O_2 . by SQ-- and NA--

Electron transfer from anthraquinone (AQ) anion radical to O_2 was monitored by cyclic voltammetry (CV). As can be seen in Fig. 1, the CV of dimethylformamide (DMF) saturated with O_2 showed cathodic (-1427 mV vs. Ag/Ag⁺) and anodic $(-1038 \text{ mV } vs. \text{ Ag/Ag}^+)$ peaks corresponding to the reduction of O_2 and oxidation of O_2 .⁻, respectively. When 0.1 mmol dm⁻³ of AQ was added to the O₂-saturated DMF solution, a reduction peak (E_{pc}) at -1333 mV was detected. The positive shift of E_{pc} from -1427 mV to -1333 mV upon addition of AQ can be explained as follows: as the E_{pc} of AQ is higher than that of O_2 , AQ is more reducible than O_2 under these electrochemical conditions. Initially, AQ is electrochemically reduced at the cathode to an anion radical which then transfers one electron to O_2 to generate O_2 . and reforms AQ. Regenerated AQ is then again electrochemically reduced to an anion radical. Since, under these conditions, the concentration of O_2 is significantly higher than that of AQ, AQ is turned over and consumes the excess O_2 . As a result, the catalytic amount of AQ acts as a mediator for the

Fig. 1 CV of 0.1 mmol dm⁻³ anthraquinone under argon (*a*), saturated O₂ (*b*) or anthraquinone under saturated O₂ (*c*) in DMF solutions (1 ml) containing 0.1 mol dm⁻³ NEt₄ClO₄ at a Pt electrode (diameter 1.6 mm) with a scan rate of 100 mV s⁻¹ at 25 °C. The potentials are *vs*. Ag/Ag⁺ (0.01 mol dm⁻³ AgNO₃ in 0.1 mol dm⁻³ NBu₄ClO₄ in MeCN.

generation of O_2 . The most aspect for the catalytic action of AQ is that AQ has a more positive E_{pc} 1 than O_2 .

To evaluate the electron transfer ability of quinones and nitroarenes, the PSCC technique was employed.⁶ In the PSCC experiment, the cathodic potential was stepped from an initial value (0 mV) where no redox reaction occurred to a final value $(E_{pc}1 \text{ of substrate})$ where one-electron reduction of substrate occurred and then the integration of current was measured for 250 ms. Turnover numbers of quinones and nitroarenes were calculated from the slope of the Anson plot (charge- $t^{\frac{1}{2}}$ plot). Fig. 2 shows typical results for AQ. The potential was stepped from 0 to -1216 mV (the E_{pc} of AQ, vs. Ag/Ag⁺). Curve (a) shows the charge-time response when AQ $(0.1 \text{ mmol dm}^{-3})$ was reduced in the absence of O2. When AQ was reduced in O₂-saturated DMF, a larger current flowed and the chargetime response curve (c) was obtained. The response curve (b)was obtained for an O2-saturated DMF solution in the absence of AQ. Increased charge-time response in curve (c) compared with curves (b) and (a) corresponds to the catalytic action of AQ in the one-electron reduction of O_2 . The amount of O_2 .

Fig. 2 Chronocoulometry of 0.1 mmol dm⁻³ anthraquinone under argon (a), saturated O₂ (b) or anthraquinone under saturated O₂ (c). The potentials are stepped from 0 to -1216 mV ($E_{\rm pc}$ of anthraquinone) for 250 ms. Other conditions are as in Fig. 1.

Fig. 3 Effect of anthraquinone concentration on the catalysing formation of O_2 .⁻⁻. Each point represents the mean value of three runs, and the error bars indicate the standard deviation. Turnover numbers are given in parentheses for each concentration.

Table 1 Chronocoulometric da	ta of quinones and nitroarenes in t	he presence or absence of oxygen
		1 20

Compounds	E _{pc} 1 ^a (mV vs. Ag/Ag+)	[S] ^b /μC ms ^{-1/2}	$[S + O_2]^b$ /µC ms ^{-1/2}	[O ₂] ^b /μC ms ^{-½}	$O_2 \cdot c$ /mmol dm ⁻³ /mmol d	Turnover number ^d
Quinone						
Benzoquinone	-812	0.022	0.027	0.006	1	0
1,4-Naphthoquinone	-981	0.019	0.037	0.017	3	0
1-Hydroxyanthraquinone	-1052	0.018	0.048	0.030	9	0.1
Menadione	-1071	0.018	0.060	0.035	46	0.5
1-Chloroanthraquinone	-1166	0.020	0.389	0.225	786	7.3
Anthraquinone	-1216	0.018	0.755	0.480	1400	14.1
5,12-Naphthacenequinone	-1319	0.019	1.667	1.087	3060	29.7
Nitroarene						
4-Nitroquinoline N-oxide	-1012	0.017	0.041	0.015	43	0.5
1,3-Dinitronaphthalene	-1095	0.018	0.079	0.048	70	0.7
1,7-Dinitronaphthalene	-1134	0.019	0.198	0.107	395	3.9
3-Nitrofluoranthene	-1204	0.019	0.521	0.378	675	6.5
<i>m</i> -Dinitrobenzene	-1227	0.018	0.560	0.400	773	7.8
1,6-Dinitronaphthalene	-1248	0.019	0.738	0.550	928	9.2
1-Nitropyrene	-1325	0.018	1.394	1.086	1580	16.2

^a Applied potential for PSCC experiment. ^b The potentials were stepped from 0 mV to the value E_{pc} for the compounds. Integrations of current were measured for 250 ms with 0.1 mmol dm⁻³ substrate [S] under argon, 0.1 mmol dm⁻³ substrate under saturated O₂ [$\tilde{S} + O_2$] or saturated O₂ [O₂] in DMF (1 cm³) containing 0.1 mmol dm⁻³ NEt₄ClO₄ at a Pt electrode (diameter 1.6 mm), and the diffusional slops of a linear plot (charge vs. t; Anson plot) were obtained. All values were substracted by [DMF] as background. The concentration and diffusion coefficient of saturated O_2 in DMF are 4.5 mmol dm⁻³ and 4.7 × 10⁻⁵ cm² s⁻¹, reported by J. M. Achord and C. L. Hussey.^{10 c} Amount of generated superoxide = 5450{[S + O] - ([S] + [O])}. ^d Turnover number of redox cycling = {[S + O] - ([S] + [O])}/[S].

generated and the AQ turnover number, calculated by the equations in Table 1, is 1400 mmol and 14.1 respectively. Generation of O_2 was examined over a wide range of concentrations of AQ. As shown in Fig. 3, the amount of O_2 . generated increased linearly with concentration of AQ within the range 0.001–0.1 mmol dm⁻³ when dissolved O_2 exceeded the concentration of AQ. A plateau was reached at 0.5 mmol dm⁻³ when O₂ was no longer in excess of AQ. The AQ turnover number was almost constant in contrast to the drastic change in the amount of O_2 . generated. Similar results were observed when 5,12-naphthacenequinone (5,12-NQ) and 1nitropyrene (1-NP) were used as mediators. Various quinones and nitroarenes with more positive redox potentials than O2 were examined by the PSCC method. The number of resultant redox cycles and the amount of production of O_2 .⁻ are summarized in Table 1. Electron transfer from the anion radicals to O₂ proceeds efficiently by nitroarenes and quinones with a reduction potential (E_{pc}) between -1100 and -1350 mV, and the amount of O_2 . - generated tends to be increased by a substrate with an E_{pc} close to that of O_2 . In particular, AQ, 5,12-NQ and 1-NP are effective mediators for superoxide generation and have redox cycling numbers >14. While the turnover number of AQ is 14.1, those of *m*-dinitrobenzene and 3-nitrofluoranthene, which form their anion radicals at approximately the same $E_{\rm pc}$ as AQ, are 7.83 and 6.50 respectively. These results show that quinone is more responsive as a mediator compared with nitroarenes. No or only weak interaction between anion radicals and O₂ is observed when the substrate E_{pc} is more positive than -1100mV.

Activation of O₂ by quinone redox cycling has been discussed in connection with quinone E_{pc} values.⁵ There are two independent factors for the generation of $O_2 \cdot \mathchar`$ by redox cycling. One is the ease of quinone reduction to form autoxidizable anion radicals for redox cycling.⁶ In reported experiments, quinones with higher E_{pc} values are generally more effective in generating O_2 .⁻ because they are easier to reduce. Consequently, when the reduction rate is the critical factor for O_2 activation, quinones that have a higher E_{pc} tend to be more effective for generating O_2 . An additional factor is the ease of one-electron transfer from anion radicals to O_2 . This is an equilibrium reaction and the rate constants become more important for evaluating the O_2 - generating ability of anion radicals. While several reports have discussed the former phenomenon, there are only a few papers that have examined the latter equilibrium. Rao and Hayson⁹ have used pulse radiolysis and kinetic absorption spectrophotometry to determine the rate constants for the reaction of SQ \cdot - with O₂ and concluded that the efficiency of electron transfer from anion radicals (electron donors) to O_2 is dependent on the E_{pc} of donor molecules and that quinones with lower E_{pc} values are more effective for O_2 activation. As a result, quinones with higher or lower E_{pc} values have a converse effect on O_2 activation by redox cycling. Our results, which show that SQ-and NA^{$\cdot-$} with lower E_{pc} values are better redox cyclers for O2 activation, are in accord with the reported results.9 Since formation of SQ-- and NA-- under PSCC conditions is fully supported by electrochemical reduction at the cathode, reaction rates of anion radicals with O₂ can be obtained from both the turnover numbers and the amount of O_2 . – generated. Thus, the present PSCC method is convenient and useful for evaluating the ability of anion radicals as mediators of reductive O₂ activation and may be useful in the study of other one-electron transfer reactions, whereby its application will be limited to equilibrium reactions. The potential relevance of toxicity caused by redox cycling could be solved by using these results.

Received, 16th November 1993; Com. 3/06849H

References

- 1 D. T. Sawer and M. J. Gibian, Tetrahedron, 1979, 35, 1471.
- 2 T. J. Monks, R. P. Hanzlik, G. M. Cohen, D. Ross and D.
- Graham, Toxicol. Appl. Pharmacol., 1992, 112, 2. R. P. Mason and J. L. Holtzman, Biochem. Biophys. Res. Commun., 1975, 67, 1267
- 4 P. Wardman and E. D. Clarke, Biochem. Biophys. Res. Commun., 1976, 69, 942.
- K. Fukuhara, Y. Hara and N. Miyata, in Oxygen Radicals, ed. K. 5 Yagi, M. Kondo, E. Niki and T. Yoshikawa, Elsevier, Amsterdam, 1992, p. 11.
- F. C. Anson, Anal. Chem. 1966, 38, 54; G. W. O'Dom and R. W. Murray, Anal. Chem., 1967, 39, 51.
- 7 P. J. O'Brien, Chem.-Biol. Interact., 1991, 80, 1.
- 8 G. Powis and P. L. Appel, Biochem. Pharmacol., 1980, 29, 2567.
- 9 P. S. Rao and E. Hayson, J. Phys. Chem., 1975, 79, 397.
 10 J. M. Achord and C. L. Hussey, Anal. Chem., 1980, 52, 601.