Selective Electrocatalysis of Olefins by a Water-soluble Manganese Porphyrin in Acidic Solution

Mao-huang Liu and Y. Oliver Su

Department of Chemistry, National Taiwan University, Taipei, Taiwan 10764, Republic of China

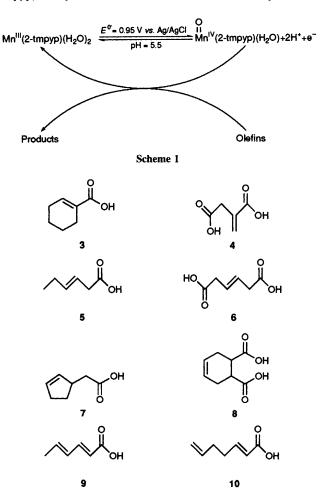
Stable manganese(IV) tetrakis(*N*-methyl-2-pyridyl)porphyrin is electrochemically generated in acidic solutions at room temperature to selectively catalyse the oxidation of olefins.

Manganese complexes¹⁻³ are thought to play an important role in the water-splitting reaction $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$. Water-soluble manganese porphyrins have been of interest for their high oxidation states.⁴ Also, manganese porphyrins have been used to mimic cytochrome P-450 as a monooxygenase. Chemical⁵ and electrochemical⁶ methods have been carried out to generate oxo-manganyl porphyrins,⁷ which can undergo oxidations towards olefins.

However, water-soluble manganese(iv) porphyrins with *N*-methyl-4-pyridyl,⁸ sulfonatophenyl,⁹ or carboxyphenyl¹⁰ substituents at the *meso* positions were not stable at pH <9.0. The electrocatalytic oxidation of olefins by the first of these was interrupted with the formation of decomposed products.¹¹


Manganese tetrakis(*N*-methyl-2-pyridyl)porphyrin Mn^{III}(2tmpyp) forms stable $O=Mn^{IV}(2-tmpyp)$ in pH 5.5 buffer solutions. The stability against ring oxidation is probably due to the proximity of the positively charged *N*-methylpyridinium groups to the porphyrin ring. $O=Mn^{IV}(2-tmpyp)$ exhibits different activities in oxygen transfer reactions for various water-soluble olefins containing carboxylic groups.

Fig. 1(*a*) shows the electrooxidation of Mn^{III}(2-tmpyp) in pH 5.5 buffer solution using an optically transparent thin-layer cell.¹² The equilibria at various potentials reflect the stability of the oxidized form. The formal potential ($E^{0'}$) is calculated¹³ to be +0.95 V. At $E_{appl} = +1.07$ V the absorption spectrum


exhibits peaks at 424 and 548 nm of O=Mn^{IV}(2-tmpyp).¹⁴ However, in the presence of 0.05 mol dm⁻³ cyclopent-2-ene-1-acetic acid, the spectrum of Mn^{III}(2-tmpyp) at 364, 454 and 556 nm remains unchanged even at $E_{appl} = +1.07$ V [Fig. 1(*b*)], but the absorbance in the 230 nm region steadily increases, which is not observed in the absence of Mn^{III}(2tmpyp). These observations indicate the formation of a new product concurrently upon the rapid reduction of O=Mn^{IV}(2tmpyp) back to Mn^{III}(2-tmpyp). When cyclopent-2-ene-1acetic acid was replaced by cyclopentylacetic acid, the corresponding saturated compound, the absorption spectrum of O=Mn^{IV}(2-tmpyp) was then observed. The reaction mechanism thus can be expressed by Scheme 1.

Bulk electrolysis was carried out and products were analysed. Ion chromatography shows a major product 1 and a minor one 2. Product 1 was isolated and its absorption spectrum exhibited a broad band at 226 nm. Parallel chemical oxidation of cyclopent-2-ene-1-acetic acid by *tert*-butyl hydroperoxide in the presence of the manganese porphyrin was carried out. The product, cyclopent-2-ene-4-one-1-acetic acid, exhibits identical retention time and absorption spectrum as 1.

Various water-soluble olefins which possess a carboxylic acid group were investigated for their activity in the Mn(2tmpyp)-catalysed oxidation. The criterion for activity was the

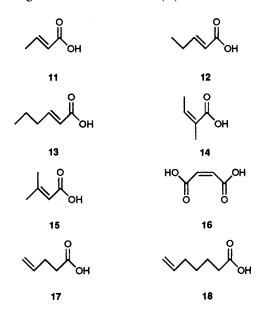


Fig. 1 (a) Thin-layer spectra of $1.0 \times 10^{-4} \mod dm^{-3} Mn^{III}(2\text{-tmpyp})$ at different oxidation potentials in pH 5.5 buffer solution. $E_{app} = (i) 0.40$ (ii) 0.90 (iii) 0.93 (iv) 0.95 (v) 0.97 (vi) 1.00 (vii) 1.02 (viii) 1.07 V. (b) Thin-layer spectra of $1.0 \times 10^{-4} \mod dm^{-3} Mn(2\text{-tmpyp})$ containing 0.05 mol dm⁻³ cyclopent-2-ene-1-acetic acid at $E_{app} = 1.07$ V in pH 5.5 buffer solution. Time interval = 1 h.

conversion of O=Mn^{IV}(2-tmpyp) back to Mn^{III}(2-tmpyp) at $E_{appl} = +1.07$ V as shown in Fig. 1. The relative rates of oxidation of the different alkene substrates by O=Mn^{IV}(2-tmpyp) were then estimated by the absorbances of Mn^{III}(2-tmpyp) and O=Mn^{IV}(2-tmpyp). It was found that the rate was in the order of cyclopent-2-ene-1-acetic > cyclohex-1-ene-1-carboxylic acid > itaconic acid. For these products having absorbance in 240 nm region, allylic oxidation is proposed.¹⁵ Compounds **3–10** are active and **11–18** inactive.

It is noteworthy that there is some regularity in the results. (i) The 2-ene carboxylic acids cannot be oxidized by $O=Mn^{Iv}(2-tmpyp)$, except cyclohex-1-ene-1-carboxylic acid and itaconic acid. (ii) All 3-ene carboxylic acids can be oxidized. (iii) Cyclic 4-ene carboxylic acids can be oxidized while straight-chain 4-enes cannot. (iv) All 6-ene carboxylic

acids can not be oxidized. (v) The 2,4-diene carboxylic acids and 2,6-diene carboxylic acids can be oxidized.

The activity towards oxidation is probably related to the closeness of the double bond to the electron-withdrawing carboxylic group under which conditions the oxidation would be more difficult and would occur at a higher potential. Cyclic olefins appear more active and hence the stereochemistry is an important factor. Nearly all straight-chain 2-, 4- and 6-enes cannot be oxidized but 2.4-dienes and 2.6-dienes can.

This work was supported by the National Science Council of the Republic of China.

Received, 17th August 1993; Com. 3/05005J

References

- 1 G. Renger, Angew. Chem., Int. Ed. Engl., 1987, 26, 643.
- 2 G. C. Dismukes, Photochem. Photobiol., 1986, 43, 99.
- 3 A. Harriman and J. Barker, *Topics in Photosynthesis*, ed. J. Barker, Elsevier, Amsterdam, 1979, vol. 3, ch. 8.
- 4 M. Calvin, Science, 1974, 184, 375.
- 5 B. Meunier, M. E. De Carvalho, O. Bortolins and M. Momenteau, *Inorg. Chem.*, 1988, 27, 161.
- 6 J. T. Groves and M. K. Stern, J. Am. Chem. Soc., 1988, 110, 8628.
- 7 R. S. Czernuszewicz, Y. Oliver Su, M. K. Stern, K. A. Macor, D. Kim, J. T. Groves and T. G. Spiro, *J. Am. Chem. Soc.*, 1988, 110, 4158.
- 8 C. Y. Lin, Z. F. Lin, T. M. Hseu and Y. Oliver Su, J. Chin. Chem. Soc., 1990, 29, 2881.
- 9 A. Harriman, J. Chem. Soc., Dalton. Trans., 1984, 141.
- 10 N. Carnieri, A. Harriman and G. Porter, J. Chem. Soc., Dalton Trans., 1982, 931.
- 11 C. Y. Lin and Y. Oliver Su, J. Electroanal. Chem., 1989, 265, 305.
- 12 A. J. Bard and L. R. Faulkner, Electrochemical Methods.
- Fundamentals and Applications, Wiley, New York, 1980.
 13 S. M. Chen and Y. Oliver Su, J. Chem. Soc., Chem. Commun., 1990, 491.
- 14 C. H. Yu, M.Sc. Thesis, National Taiwan University, 1991.
- 15 D. R. Leanord and J. R. Lindsay Smith, J. Chem. Soc., Perkin. Trans. 2, 1990, 1917.