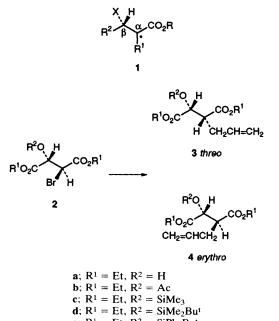
1,2-Asymmetric Induction in Radical-mediated Allylation of Diethyl (2S,3S)-3-Bromo-2-oxysuccinates: Efficient Stereoselectivity Enhancement by Complexation with Eu(fod)₃


Hajime Nagano* and Yukie Kuno

Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112, Japan

Allylation of diethyl (2S, 3S)-3-bromo-2-trimethylsilyloxysuccinate with allyltributyltin in the presence of Eu(fod)3 was found to give diethyl (2R, 3R)-3-allyl-2-trimethylsilyloxysuccinate with high diastereoselectivity [(2R, 3R): (2R, 3S = 8.6:1].

A current interest in radical chemistry is the control of acyclic stereochemistry. In particular, attention has focused on chirality transfer using stereogenic centres adjacent to the radical carbon atom (1,2-asymmetric induction),¹ and recently stereoselective trapping of radicals 1 bearing a carbonyl group and a stereogenic centre has been demonstrated by Hart,² Guindon,^{3,4f} Giese,⁴ Curran,⁵ and others.⁶ However, little is known about controlling the stereochemistry by complexation of radical intermediates (whether cyclic or acyclic) with Lewis acids.^{2c,3c,7} We now report that the stereoselectivity in the radical-mediated allylation of diethyl (2S, 3S)-3-bromo-2oxysuccinates 2 yielding diethyl 3-allyl-2-oxysuccinates 3 (2R, 3R) and 4 (2R, 3S) was significantly affected when the reaction was conducted in the presence of Eu(fod)₃ [= tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyloctane-3,5-dionato)europium].†

A summary of the allylation results is given in Table 1. Allylation of 2a-e showed modest to poor stereoselectivities in the absence of Lewis acid (entries 1, 3, 5 and 8). Addition of 1.1 mol. equiv. of Eu(fod)₃ reversed the stereoselectivity in the reaction of 2a, but the stereoselectivity enhancement induced by complexation was not large (entry 2). In the case of **2b**, **2c** and **2d** the addition of $Eu(fod)_3$ (1.1 mol. equiv.) led to high stereoselectivity enhancement (entries 4, 7 and 11).[‡] The stereoselectivity in the reaction of 2c and 2d decreased as the molar ratio of Eu(fod)₃ was decreased (entries 6, 9 and 10), but further improvement of stereoselectivity was not attained even in the presence of 2 mol. equiv. of Eu(fod)₃. Allylation of 2e and 2f showed poor stereoselectivity in the presence of $Eu(fod)_3$ (entries 12 and 13).§

e:
$$\mathbf{R}^1 = \mathbf{E}\mathbf{t}$$
, $\mathbf{R}^2 = \mathbf{S}\mathbf{i}\mathbf{P}\mathbf{h}_2\mathbf{B}\mathbf{u}^1$

f; $R^1 = Pr^i$, $R^2 = SiMe_2Bu^t$

Scheme 1 Reagents and conditions: CH2=CHCH2SnBun3, AIBN, Lewis acid, CH₂Cl₂, hv

Table 1 Stereoselectivity in allylation of 2a-fa				
Entry	Bromide 2 ^b	Eu(fod) ₃ / mol. equiv.	Yield (%)	Diasteroisomer ratio ^{b,c} 3:4
1	a	_	85	1:1.9 ^d
2	а	1.1	63	1.7:1 ^d
3	b		91	1.9:1
4	b	1.1	72	3.4:1
5	с		63	1.3:1
6	с	0.1	45	3.0:1 ^e
7	с	1.1	62	8.6:1 ^e
8	d		57	1.1:1
9	d	0.1	81	2.7:1
10	d	0.3	69	4.1:1
11	d	1.1	67	5.7:1
12	e	1.1	66	1.5:1
13	f	1.1	77	1.7:1

^a Allylation of 2 was conducted with 2 mol. equiv. of allyltributyltin and a catalytic amount of AIBN in CH₂Cl₂ (0.07 mol dm⁻³) under irradiation with 100 W sunlamp for ca. 24 h in the presence (or absence) of Eu(fod)₃. After treatment with KF the mixture was passed through a short column of neutral alumina to eliminate $Eu(fod)_3$ (entries 9–11), or purified by silica gel flash chromatography (entries 1-5, 8, 12, and 13). ^b Precursors 2 and authentic products 3 and 4 were prepared from diethyl (2R, 3R)-tartrate (ref. 8) and diethyl malate (ref. 8), respectively. ^c Product ratios of the inseparable mixtures were determined by ¹H NMR integration of 2-H. ^d The ratio of 3a and 4a was determined after acetylation. e The mixture of 3c and 4c was desilylated, and then acetylated to obtain the yield (for three steps) and the diastereoisomer ratio.

In conclusion we have demonstrated that the radical-based allylation of 2c with allyltributyltin in the presence of Eu(fod)₃ gives the threo-isomer 3c with high stereoselectivity. Chelation-controlled allylation of the dianion derived from diethyl malate gives erythro-4a with extremely high stereoselectivity,8 and alkylation of diethyl 2,3-epoxysuccinate derived from optically active diethyl tartrate gives diethyl erythro-3-alkyl-2hydroxysuccinate.9 This work and ours are complementary.

Received, 14th December 1993; Com. 3/07380G

Footnotes

 $[\]dagger$ The diastereoisomer ratio $\mathbf{3d}$: $\mathbf{4d}$ in the allylation of $\mathbf{2d}$ decreased in the order of $Pr(fod)_3$ (6.3:1)>Eu(fod)_3 (5.7:1)>Gd(fod)_3 $(4.2:1)>Dy(fod)_3$ $(3.4:1)>Ho(fod)_3$ $(2.1:1)>Er(fod)_3$ (2.2:1). $Eu(tfc)_3$ {=tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorato]europium} was less effective. $Pr(thd)_3$ [=tris(2,2,6,6-tetramethyl-heptane-3,5-dionato)praseodymium] and Yb(thd)₃ had no effect on the diastereocontrol.

[‡] Racemization was not observed after HPLC analysis of the (R)- and (S)-MTPA esters [3 and 4: $R^1 = Et$, $R^2 = C(=O)C(OMe)CF_3Ph$] derived from 3d and 4d.

[§] The diastereoisomer ratio in the allylation of ethyl 2-bromo-3-(tertbutyldimethyl)silyloxybutanoate in the presence of 1.1 mol. equiv. of

Eu(fod)₃ was *anti*: syn = 4.2:1, whereas the ratio was 1.7:1 in the absence of the complex.^{5c}

References

- 1 N. A. Porter, B. Giese and D. P. Curran, Acc. Chem. Res., 1991, 24, 296; W. Smadja, Synlett, 1994, 1.
- 2 (a) D. J. Hart, H.-C. Huang, R. Krishnamurthy and T. Schwartz, J. Am. Chem. Soc., 1989, 111, 7507; (b) D. J. Hart and R. Krishnamurthy, Synlett, 1991, 412; (c) D. J. Hart and R. Krishnamurthy, J. Org. Chem., 1992, 57, 4457.
- 3 (a) Y. Guindon, C. Yoakim, R. Lemieux, L. Boisvert, D. Delorme and J.-F. Lavallée, *Tetrahedron Lett.*, 1990, 31, 2845; (b) Y. Guindon, J.-F. Lavallée, L. Boisvert, C. Chabot, D. Delorme, C. Yoakim, D. Hall, R. Lemieux and B. Simoneau, *Tetrahedron Lett.*, 1991, 32, 27; (c) Y. Guindon, J.-F. Lavallée, M. Llinas-Brunet, G. Horner and J. Rancourt, J. Am. Chem. Soc., 1991, 113, 9701; (d) K. Durkin, D. Liotta, J. Rancourt, J.-F. Lavallée, L. Boisvert and Y. Guindon, J. Am. Chem. Soc., 1992, 114, 4912.
- 4 (a) M. Bulliard, H.-G. Zeitz and B. Giese, Synlett, 1991, 423; (b) B.

Giese, M. Bulliard and H.-G. Zeitz, Synlett, 1991, 425; (c) M. Bulliard, M. Zehnder and B. Giese, Helv. Chim. Acta, 1991, 74, 1600; (d) B. Giese, W. Damm, F. Wetterich and H.-G. Zeitz, Tetrahedron Lett., 1992, 33, 1863; (e) P. Erdmann, J. Schäfer, R. Springer, H.-G. Zeitz and B. Giese, Helv. Chim. Acta, 1992, 75, 638; (f) B. Giese, W. Damm, F. Wetterich, H.-G. Zeitz, J. Rancourt and Y. Guindon, Tetrahedron Lett., 1993, 34, 5885.

- 5 (a) D. P. Curran, A. C. Abraham and H. T. Liu, J. Org. Chem., 1991, 56, 4335; (b) D. P. Curran and A. C. Abraham, *Tetrahedron*, 1993, 49, 4821; (c) D. P. Curran and P. S. Ramamoorthy, *Tetrahedron*, 1993, 49, 4841.
- 6 J.-Y. Nedelec, D. Blanchet, D. Lefort and J. Cruilhem, J. Chem. Res., 1987, (S) 315; (M) 2660; A. L. J. Beckwith, R. Hersperger and J. M. White, J. Chem. Soc., Chem. Commun., 1991, 1151; H. Mamdani, B. De Jeso, H. Deleuze, A. Saux and B. Maillard, Tetrahedron: Asymmetry, 1993, 4, 1233; A. De Mesmaeker, A. Waldner, P. Hoffmann and T. Mindt, Synlett, 1993, 871.
- 7 P. Renaud and M. Ribezzo, J. Am. Chem. Soc., 1991, 113, 7803; T. Toru, Y. Watanabe, M. Tsusaka and Y. Ueno, J. Am. Chem. Soc., 1993, 115, 10464.
- 8 D. Seebach and D. Wasmuth, Helv. Chim. Acta, 1980, 63, 197.
- 9 K. Mori and H. Iwasaki, Tetrahedron, 1980, 36, 87.