Cobaltocene Intercalation into Misfit Layer Chalcogenides

Lourdes Hernán, ^a Julián Morales, ^a Luis Sánchez, ^a José L. Tirado^{* a} and Agustin R. González-Elipe^b

^a Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Avda. San Alberto Magno sIn. E-14004 Córdoba, Spain

^b Instituto de Ciencias de Materiales de Sevilla, CSIC-Universidad de Sevilla, E-41080 Sevilla, Spain

A novel intercalation complex is obtained by reaction of cobaltocene solutions in acetonitrile with $(PbSe)_{1,12}(NbSe_2)_2$ misfit layer compound.

Since the early observation by Dines¹ that metallocenes could be intercalated into layered metal dichalcogenides, cobaltocene intercalation has been extensively investigated.^{2–4} Misfit layered chalcogenides^{5–8} have been recently reported as host materials for intercalation reactions with electropositive metals^{4–13} and Lewis bases.^{14–17} Here we report the preliminary results on the reactivity of $(PhSe)_{1.12}(NbSe_2)_2$ and $(PbS)_{1.12}(NbS_2)_2$ towards cobaltocene intercalation. In these solids the trigonal-prismatic coordination of Nb and the presence of a true van der Waals gap between consecutive NbX₂ (X = S, Se) slabs allow a direct comparison with the intercalation properties of 2H-niobium dichalcogenides.

The misfit layer chalcogenides were prepared as described elsewhere.^{7,8} About 100 mg of each powdered sample of sulfide and selenide were dispersed in 3 ml of a 0.05 mol dm^{-3} solution of cobaltocene (provided by Strem) in dry acetonitrile and sealed in glass tubes under vacuum. The reactions were followed at room temp. and 90 °C during different time periods. The resulting solids were extensively washed with acetonitrile inside a dry-box. A change in colour from dark grey to black and a significant swelling of the selenide particles was observed after treatment for 7 d at 90 °C or 14 d at room temp. By contrast, little morphological changes were observed in the sulfide particles after treatment at either temperature. Energy dispersive X-ray microanalysis and atomic absorption spectroscopy analyses indicated absence of intercalation in the sulfide samples, while a stoichiometry $[Co(\eta^5-C_5H_5)]_{0.31}(PbSe)_{1.12}(NbSe_2)_2$ was confirmed by elemental analysis after reaction of the host selenide with cobaltocene. [Found (Calc.); C. 4.50 (4.22); Co, 2.00 (2.07)]. This composition is similar to that found in $[Co(\eta^{5} C_5H_5)]_{0.31}NbSe_2$,¹ as only one van der Waals layer per two cosecutive NbSe₂ slabs are found in the misfit layer structure. The material is thermally stable under nitrogen up to 500 °C.

X-Ray powder diffraction patterns of misfit layer chalcogenides usually show an intense set of (001) lines and few extra lines, as a consequence of the misfit between sublattices and preferred orientation phenomena. For (PbSe)_{1.12}(NbSe₂)₂, the spacings of the (001) lines indicates a periodic length of 18.75 Å, which implies the following stacking unit of selenide slabs: -NbSe₂-PbSe-NbSe₂-.8 For cobaltocene intercalated (PbSe)_{1.12}(NbSe₂)₂, the experimental X-ray diffraction pattern shows a different set of lines consistent with a periodic length of 24.33 Å (Table 1). The magnitude of the interplanar expansion (5.58 Å) is similar to the size of the cobaltocene molecule and to the expansions found in other intercalates of transition-metal dichalcogenides,¹ suggesting that the intercalate is located in all NbSe₂-NbSe₂ interlayers leaving empty PbSe-NbSe₂ interlayers, *i.e.* with a NbSe₂-PbSe-NbSe₂- $Co(\eta^5-C_5H_5)_2$ - stacking unit. In addition the observed expansions are consistent with cobaltocene molecules oriented with the C₅ axis parallel to the van der Waals layers. The Patterson analysis obtained by using 17 (00l) reflection intensities of both pristine and intercalated $(PbSe)_{1.12}(NbSe_2)_2$ (Fig. 1) reveal that the interatomic distances between Se, Pb and Nb atoms remain basically unaltered in each -NbSe2-PbSe-NbSe2block and that the intercalate dimensions are responsible for the observed expansion almost exclusively. From these results, the model shown in Fig. 2 can be proposed.

Electron diffraction patterns recorded with the incident beam parallel to [001] were coincident for the pristine and intercalated selenide as a consequence of the topotactic nature of the process. The misfit between sublattices remains unaffected by cobaltocene intercalation as evidenced by the constancy in a_{PbSe}/a_{NbSe2} ratio. The observation of a single relative orientation of both sublattices can be considered as an indirect proof that intercalation takes place between consecutive NbSe₂ slabs. In fact, it was shown that alkali-metal

Table	1	Powder	X-ray	diffraction	data	for
[Co(n ⁵ -6	C_5H_5	$_{0.31}$ (PbSe) _{1.12}	$_2(NbSe_2)_2$			

h	k	l	$d_{\rm obs}$	d _{cal}	(1/1 ₀) _{obs}	
0	0	n	24.69	24.33	100	
0	0	2 <i>n</i>	12.19	12.16	62	
0	0	3n	8.146	8.110	18	
0	0	4 <i>n</i>	6.094	6.082	46	
0	0	5n	4.874	4.866	18	
0	0	6n	4.058	4.055	10	
0	0	7n	3.477	3.476	47	
0	0	8n	3.042	3.041	52	
0	0	9n	2.703	2.703	18	
0	0	10n	2.434	2.433	14	
0	0	11 <i>n</i>		2.212		
0	0	12 <i>n</i>	2.028	2.027	11	
0	0	13n		1.871		
0	0	14 <i>n</i>	1.7383	1.7378	7	
0	0	15n	1.6226	1.6220	12	
0	0	16n	1.5213	1.5206	16	
0	0	17 <i>n</i>		1.431		

Fig. 1 Scaled one-dimensional Patterson diagrams for the half-cells of $(PbSe)_{1,12}(NbSe_2)_2$ (*a*) and $[Co(\eta^5-C_5H_5)]_{0,31}(PbSe)_{1,12}(NbSe_2)_2$ (*b*)

intercalation into $(MS)_{1 + y}(NbS_2)_2$ (M = Sn, Pb) between MS and NbS₂ slabs leads to orientation anomalies between both sublattices.^{10,11}

Preliminary XPS results show a single Co ${}^{2}P_{3/2}$ photoline from $[Co(\eta^5C_5H_5)]_{0.31}$ (PbSe)_{1.12}(NbSe₂)₂ with the peak located at 782 eV, which was assigned to Co³⁺, indicative of a complete electron transfer from the guest to the misfit layer selenide host. This result contrasts with the low but non-zero Co²⁺ content found in other cobaltocene intercalates.⁴ However, recent infrared spectroscopic studies are consistent with the presence of only the cationic form of the cobaltocene within the SnS₂ host.³

The poor cobaltocene intercalation properties of the sulfide sample as compared with $(PbSe)_{1.12}(NbSe_2)_2$ were also evident by X-ray and electron diffraction data and agree with previous results obtained for 2H–NbS₂ and 2H–NbSe₂. While

Fig. 2 Schematic projection of atom layers along c for $(PbSe)_{1,12}(NbSe_2)_2$ and $[Co(\eta^5-C_5H_5)]_{0,31}(PbSe)_{1,12}(NbSe_2)_2$

cobaltocene intercalation into $2H-NbSe_2$ was reported by Dines,¹ Clement *et al.*² were unable to obtain intercalation products by direct reaction of different metallocenes with $2H-NbS_2$.

We express our gratitude toward CICYT (contract MAT93-1204) for the financial support of this work.

Received, 30th December 1993; Com. 3/07592C

References

- 1 M. B. Dines, Science, 1975, 188, 1210.
- 2 R. P. Clement, W. B. Davies, K. A. Ford, M. L. H. Green and A. J. Jacobson, *Inorg. Chem.*, 1978, **17**, 2754.
- 3 D. G. Clere and D. A. Cleary, Chem. Mater., 1992, 4, 1344.
- 4 D. O'Hare, Chem. Soc. Rev., 1992, 121, and references cited therein.
- 5 G. A. Wiegers and A. Meershaut, J. Alloys Comps., 1992, 178, 351.
- 6 A. Meerschaut, C. Auriel and R. Rouxel, J. Alloys Comps., 1992, 183, 129.
- 7 A. Meerschaut, L. Guemas, C. Auriel and J. Rouxel, Eur. J. Solid State Inorg. Chem., 1990. 27, 557.
- 8 C. Auriel, A. Meerschaut, R. Roesky and J. Rouxel, Eur. J. Solid State Inorg. Chem., 1992, 29, 557.
- 9 C. Auriel, A. Meerschaut, P. Deniard and J. Rouxel, C.R. Acad. Sci., Ser. 2, 1991, 313, 1233.
- 10 L. Hernán, P. Lavela, J. Morales, J. Pattanayak and J. L. Tirado, Mater. Res. Bull., 1991, 36, 1211.
- 11 L. Hernán, J. Morales, J. Pattanayak and J. L. Tirado, J. Solid State Chem., 1992, 100, 267.
- 12 C. Barriga, P. Lavela, J. Pattanayak, J. Morales and J. L. Tirado, Chem. Mater. 1992, 4, 1021.
- 13 L. Hernán, J. Morales, L. Sánchez and J. L. Tirado, Solid State Ionics, 1992, 58, 179.
- 14 Y. Oosawa, Y. Gotoh and M. Onoda, Chem. Lett., 1989, 1563.
- 15 P. Lavela, J. Morales and J. L. Tirado, Chem. Mater., 1992, 4, 2.
- 16 R. Guzmán, L. Hernán, J. Morales, J. Pattanayak and J. L. Tirado, Mater. Res. Bull., 1993, 28, 469.
- 17 L. Hernán, J. Morales, L. Sánchez and J. L. Tirado, Chem. Mater., 1993, 5, 1167.