Regiochemical Control in Reductive Elimination of ($\boldsymbol{\eta}^{3}$-Crotyl)(aryl)palladium(ı) Complexes

Hideo Kurosawa,* Kenjin Shiba, Kazuyoshi Hirako, Kiyomi Kakiuchi and Isao Ikeda
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

The electronic character of PR_{3} ligand controls the relative rates of the geometrical isomerisation and the cis reductive elimination of η^{3}-crotyl(aryl)palladium complexes; more electron-withdrawing phosphites lead to selective bond formation at the more substituted allyl end.

In relation to regiochemical control in Pd-catalysed substitution of allylic substrates, ${ }^{1}$ attempts have been made to correlate the electronic role of ancillary ligands with the site of external nucleophilic attack at Pd-bound, unsymmetrically substituted η^{3}-allyl group. ${ }^{2}$ Another important η^{3}-allylpalladium transformation is the reductive elimination of (η^{3}-allyl) (organo)palladium complexes. We wish to report the first evidence for occurrence of bond formation between two mutually cis carbons in a η^{3}-allyl system and ligand-dependent regiochemistry of the reductive elimination of η^{3}-crotylpalladium complexes.
(η^{3}-Crotyl)(2,5-dichlorophenyl)palladium(II) complex with PPh_{3} ligand 1 was prepared from $\mathrm{Pd}\left(\eta^{3}\right.$-crotyl) $\mathrm{Cl}\left(\mathrm{PPh}_{3}\right)$ and $2,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ZnCl}$ in THF. \dagger Repeated recrystallization from benzene-hexane afforded a sample enriched in one geometrical isomer 1a (1a:b $=90: 10$). Allowing a $\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene solution of this sample to stand at $25^{\circ} \mathrm{C}$ (more than 3 h) or $40{ }^{\circ} \mathrm{C}(15 \mathrm{~min})$ afforded an equilibrium mixture ($\mathbf{1 a}: \mathbf{b}=$ $70: 30$) with partial decomposition ($<10 \%$). The phosphite analogue 2 was too unstable to isolate by this method, but was generated quantitatively in solution from the arsine complex, $\quad \operatorname{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHMe}\right)\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)\left(\mathrm{AsPh}_{3}\right), \dagger$ and $\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathbf{P}$ by ligand exchange (isomer ratio $2 \mathbf{a}: \mathbf{b}=$ $78: 22$). Solutions of $2 \mathbf{a}: \mathbf{b}$ with a different isomer ratio ($90: 10$, $70: 30$) were also generated from 1a:b having the corresponding isomer ratio and large excess (~ 10 equiv.) $\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$.
Thermolytic behaviour of 1 and 2 in benzene or toluene (Scheme 1) showed an interesting contrast depending on the nature of PR_{3}. Thermolysis \ddagger of $\mathbf{1}(\mathbf{1 a}: \mathbf{b}=90: 10)$ in benzene at $40{ }^{\circ} \mathrm{C}$ gave a smaller amount of 3 than $4(E: Z=5: 1) \S$ ($\mathbf{3}: \mathbf{4}=25: 75$, total yield 91%, half-life of the thermolysis 200 $\mathrm{min})$. On the other hand, $2(\mathbf{2 a : b}=90: 10)$ underwent reductive elimination considerably faster under the same conditions (half-life 40 min) to give the products of which the isomer ratio almost completely retained the ratio of the complexes (total yield $90 \%, \mathbf{3}: 4=88: 12, E: Z$ of $4=8: 1$). \S Moreover, heating a mixture of $\mathbf{2 a}: \mathbf{b}$ with a different ratio ($78: 22,70: 30$) also led to retention of the isomer distribution in the products ($\mathbf{3 : 4}=76: 24,68: 32$, respectively).

Particularly informative was the observation during the thermolysis of a mixture of $\mathbf{2 a}: \mathbf{b}(78: 22)$ in toluene at $25^{\circ} \mathrm{C}$ that at the early stage the isomer $\mathbf{2 b}$ underwent the reductive elimination to give $\mathbf{4}$ almost exclusively (half-life less than 10

Scheme $1\left(\mathrm{Ar}=2,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ - $)$
\min), whereas 2a remained almost unchanged at this stage. The amount of 4 produced was nearly equal to that of $\mathbf{2 b}$ consumed. Then 2 a gradually disappeared to give 3 (half-life 210 min) without isomerising to $\mathbf{2 b}$, eventually affording the regioretentive coupling products $(\mathbf{3 : 4}=76: 24)$. The much faster coupling in 2 b than in $\mathbf{2 a}$ is presumably due to a more severe steric congestion at the $\mathrm{C}-\mathrm{C}$ bond forming step in the latter case. Also, occurrence of the bond formation between two mutually cis carbons is demonstrated here for the first time for η^{3}-allyl systems ($\mathbf{2 a} \rightarrow \mathbf{3}$ and $\mathbf{2 b} \rightarrow \mathbf{4}$), as was the case in dialkylmetal complexes. ${ }^{4}$

At the early stage of the thermolysis of the PPh_{3} analogue 1a:b (90:10) in toluene at $40^{\circ} \mathrm{C}$ (up to 20% conversion within 60 min), comparable amounts of $\mathbf{3}$ and 4 were formed where the ratio $\mathbf{1 a}: \mathbf{b}$ changed slightly from the original $90: 10$ to $c a$. $85: 15$. This suggests that the ratio of the reductive elimination rate of 1 b vs. a is again large (ca. 10). One significant implication not applicable to the case of the phosphite analogue is that the isomerisation of $\mathbf{1 a}$ to \mathbf{b} must be fast enough to maintain 1a:b not larger than the original value. Otherwise $1 \mathbf{a}: \mathbf{b}$ would have increased rapidly as in the case of $\mathbf{2 a}: \mathbf{b}$. As the thermolysis proceeded further, 1a:b decreased to the equilibrium value in ca. 300 min . Also, $\mathbf{3 : 4}$ decreased gradually, eventually reaching the value of $25: 75$.

Presumably, the relative rates of the geometrical isomerisation and the reductive elimination are responsible for the product selectivity. A precise mechanism of the isomerisation of (η^{3}-allyl)(organo)palladium complexes is not well understood. ${ }^{5}$ As deduced from the results shown above, excess free PPh_{3} apparently retarded the isomerisation of $\mathbf{1 a}$ to \mathbf{b} to some extent, \mathbb{T} consistent with a T-shaped intermediate in the isomerisation. ${ }^{6}$ In any case, the following fact seems to suggest that a change in the nature of the ligand exerts a larger effect on the reductive elimination rate than on the isomerisation rate. Thus, we observed that $\mathbf{3 / 4}$ obtained by thermolysing various $\mathrm{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHMe}\right)\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)\left(\mathrm{PR}_{3}\right)$ complexes, which were generated from $1 \mathbf{a}: \mathbf{b}(90: 10)$ and large excess PR_{3} with retention of the isomer ratio, increased as the electronwithdrawing ability of PR_{3} increased; i.e. 3:4 increased in the order (R in parentheses): $19: 81\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)<25: 75(\mathrm{Ph})<$ $57: 43\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)<67: 33(\mathrm{OPh})<72: 28\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)<$ $88: 22\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)<91: 9\left(2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right)$. It is known ${ }^{3}$ that the reductive elimination of (η^{3}-allyl)(aryl)palladium complexes becomes faster with increase in the electron-withdrawing ability of phosphines, and that phosphite ligands enhance the rate more efficiently than phosphines. Thus, the more withdrawing phosphite ligands might have compelled 2a and its structural analogues to collapse to 3 before isomerising to $\mathbf{2 b}$ and its analogues. On the other hand, the phosphine complexes 1a and its analogues may not have undergone the $\mathrm{C}-\mathrm{C}$ coupling so readily as the withdrawing counterparts, and thus the geometrical isomerisation and the subsequent collapse of the precursors to $\mathbf{4}$ may have become a dominant pathway. The bulky ligand $\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$ would have retarded the isomerisation of an isomer analogous to 2 a by steric effects.

Finally, consistent with the above ligand effects, the reaction between $\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{Cl}$ and PhZnCl in THF at room temperature in the presence of $5 \mathrm{~mol} \% \operatorname{Pd}\left(\eta^{3}\right.$ crotyl) $\mathrm{Cl}(\mathrm{L})$ afforded high yield of a mixture of
$\mathrm{CH}_{2}=\mathrm{CHCH}(\mathrm{Me}) \mathrm{Ph}$ and $\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{Ph}$ in $80: 20$ ratio for $\mathrm{L}=\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$ and $23: 77$ for $\mathrm{L}=\mathrm{PPh}_{3}$.

Partial support of this work through Grant-in-Aid for Scientific Research, Ministry of Education and Asahi Glass Foundation is gratefully acknowledged.

Received, 7th December 1993; Com. 3/07243F

Footnotes

\dagger Prepared in a manner similar to those reported for unsubstituted allylic analogues ${ }^{3}$ and characterised by analysis and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra.
\ddagger Carried out in the presence of more than 3 equiv. free PR_{3} : otherwise Pd black precipitated which led to non-reproducible product isomer distribution. The amount of PR_{3} added ($3-10$ equiv.) had no effect on either the reaction rate nor the product isomer ratio, ruling out participation of σ-allylic species, $\mathrm{Pd}\left(\sigma-\mathrm{CH}_{2} \mathrm{CHCHMe}\right)-$ $(\mathrm{Ar})\left(\mathrm{PR}_{3}\right)_{2}$ into the rate determining step of the reductive elimination, as has already been discussed before. ${ }^{3}$
§ The Z isomer of 4 may have been formed from the anti-Me isomer of $\mathbf{1 b}$ or $\mathbf{2 b}$ which had too low concentration to be detected in ${ }^{1} \mathrm{H}$ NMR spectra.
II A quantitative comparison between the isomerisation rates in the absence and the presence of free PPh_{3} was difficult owing to the non-
negiligible effect of the reductive elimination step on the isomer distribution, particularly in the case of the PPh_{3}-retarded isomerisation.

References

1 (a) B. M. Trost, L. Weber, P. E. Strege, T. J. Fullerton and T. Dietsche, J. Am. Chem. Soc., 1978, 100, 3416; (b) L. S. Hegedus, B. Akermark, D. J. Olsen, O. P. Anderson and K. Zetterberg, J. Am. Chem. Soc., 1982, 104, 697; (c) J. S. Temple, M. Riediker and J. Schwartz, J. Am. Chem. Soc., 1982, 104, 1310; (d) E. Keinan and M. Sahai, J. Chem. Soc., Chem. Commun., 1984, 648; (e) T. Hayashi, M. Konishi, K. Yokota and M. Kumada, J. Organomet. Chem., 1985, 285, 359; (f) Y. Hatanaka, Y. Ebina and T. Hiyama, J. Am. Chem. Soc., 1991, 113, 7075; (g) M. Oshima, I. Shimizu, A. Yamamoto and F. Ozawa, Organometallics, 1991, 10, 1221.
2 B. Akermark, S. Hansson, B. Krakenberger, A. Vitagliano and K. Zetterberg, Organometallics 1984, 3, 679.
3 H. Kurosawa, M. Emoto, H. Ohnishi, K. Miki, N. Kasai, K. Tatsumi and A. Nakamura, J. Am. Chem. Soc., 1987, 109, 6333. 4 A. Gillie and J. K. Stille, J. Am. Chem. Soc., 1980, 102, 4933.
5 H. Kurosawa and S. Numata, J. Organomet. Chem., 1979, 175, 143.
6 (a) G. K. Anderson and R. J. Cross, Chem. Soc. Rev., 1980, 9, 185;
(b) F. Ozawa, T. Ito, Y. Nakamura and A. Yamamoto, Bull. Chem. Soc. Jpn., 1981, 54, 1868.

