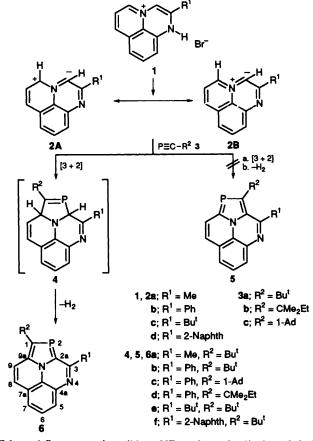
Azaphosphaullazines: 14π -Annulenes containing $\lambda^3 \sigma^2$ -Phosphorus¹

Uwe Bergsträßer, Jörg Stannek and Manfred Regitz*


Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Federal Republic of Germany

Reactions of the *in situ* generated peripheral azomethine ylide dipoles 2a-d with the kinetically stabilised phosphaalkynes 3a-c give rise to the title compounds 6a-f which possess a 14π -perimeter including a phosphorus atom in a low coordination as shown by the limiting forms 6A and 6B.

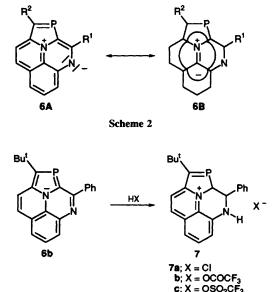
In the course of our investigations on the synthesis of 1- and/or 2-phosphaindolizines² by 1,3-dipolar cycloadditions of phosphaalkynes to azomethine ylides, the possibility of preparing cyclazines containing low-coordinated phosphorus atoms became apparant. Cyclazines as such are defined as unsaturated, conjugated, polycyclic compounds with a planar structure resulting from the central nitrogen atom.^{3,4} [3.2.2]-Cyclazines are, in principle, accessible by [3 + 2] cycloadditions of acetylenes⁵ and arynes⁶ to indolizines.

Unfortunately, our attempts to realise similar reactions of the synthesised phosphaindolizines with C–C multiple bonds were unsuccessful, even under drastic thermal conditions. We therefore turned our attention to a route involving the reaction of the peripheral azomethine ylides 2 with phosphaalkynes 3 to yield the corresponding phospha[3.3.2]cyclazines.⁷ Investigations on the reactivity of phosphorusfree representatives of this structural type prophesied an interesting chemical behaviour.⁸

Deprotonation of the salts $1a-d^{\dagger}$ by triethylamine in toluene in a sealed Schlenk tube in the presence of the phosphaalkynes $3a-c^9$ under heating gave rise to the aza-phosphaullazines $6a-f^{10}$ which were isolated in 30-43% yields as yellow crystalline powders (Scheme 1). The cycloaddition process is regiospecific: isomers originating from the reversed

Scheme 1 Reagents and conditions: NEt₃-toluene (\rightarrow 2), then 12-24 h in a sealed Schlenk tube at 130-140 °C

dipole orientation **5a-f** could not be detected by ³¹P NMR spectroscopy on the crude reaction mixtures. The [3 + 2] cycloaddition is then followed by a dehydrogenation leading to the heteroaromatic system.


In agreement with our structural assignments, the ³¹P NMR spectra of **6a–f** exhibit characteristic signals at δ 108.2–117.2 for the low coordinated phosphorus atom in the 1,3-azaphosphole system.¹¹ The ¹³C NMR signals of the carbon atoms C-1 (δ 156.3–160.2) and C-2a (δ 140.0–143.4) are each split into doublets by ¹J_{C,P} couplings of 49.4–55.4 Hz. The carbon atoms C-9a (δ 131.3–133.6) and C-3 (δ 158.3–168.4) not surprisingly experience appreciably smaller splittings (²J_{C,P} 9.1–15.4 Hz).

The regiochemistry of the reaction can be deduced unequivocally from the magnitudes of the phosphorus couplings of the C atom of the organic group R¹ linked to the perimeter. Thus, the signal for the carbon atom of the methyl group at position 3 in **6a** appears as a doublet at δ 23.8 with a coupling constant of 7.5 Hz while the aromatic *ipso*-carbon atom at C-3 in **6b** (δ 139.4) exhibits a coupling of 20.2 Hz. The sizes of these splittings can only be reconciled with the 1,3-arrangement of the involved atoms as present in **6** and not with that in the isomeric structure **5**.¹²

The chemical shifts of the hydrogen atoms H-5 to H-9 are in the range δ 7.0–7.9, *i.e.* in the same order of magnitude as for the phosphorus-free analogues.^{7.8} The mass spectra (M⁺:: 35– 100%) exhibit a paucity of lines, as is typical for aromatic systems.

As in the case of the parent ullazines,¹⁰ the phosphaullazines **6** may also be considered as Hückel aromatic systems as represented by **6A** \leftrightarrow **6B** (Scheme 2) in which the perimeters contain 14 π -electrons. To the best of our knowledge, these compounds are the first annulenes with $\lambda^3\sigma^2$ -phosphorus atoms to be reported.

These novel annulenes are protonated at N-4 by strong acids (Scheme 3), as has been demonstrated for the example of

Scheme 3

reactions of 6b with hydrogen chloride gas, trifluoroacetic acid, or trifluoromethanesulfonic acid in aprotic solvents.

The orange salts 7a-c thus obtained in 91-96% yield were identified unambiguously by elemental and spectroscopic analyses. In comparison to that of 6b, their ³¹P NMR spectra reveal pronounced shifts of the signals to low field (\$ 151.4-160.3) which, together with the paramagnetic shifts of the protons H-5 to H-9 (δ 7.8-8.2), is implicit. The protonation itself can be recognised, for example in the case of 7b, by a broad NH signal at δ 14.8.

We are grateful to the Fonds der Chemischen Industrie and the Landesregierung von Rheinland-Pfalz (Graduiertenkolleg: Phosphorus as the link between different chemical disciplines) for generous financial support of this work.

Received, 30th December 1993; Com. 3/07618K

Footnote

† The azomethine ylides 2c, d and/or their precursors 1c, d were not previously known; they were prepared in the same way as 1a, b and 2a, b, respectively.7

References

- 1 For part 78 of the series Organophosphorus Compounds, see: H. Memmesheimer and M. Regitz, Rev. Heteroatom Chem., 1994, in the press.
- 2 U. Bergsträßer, A. Hoffmann and M. Regitz, Tetrahedron Lett., 1992, 33, 1049.
- W. Flitsch and U. Krämer, Adv. Heterocycl. Chem., 1978, 2, 321.
- V. Boekelheide and R. J. Windgassen, J. Am. Chem. Soc., 1958, 4 80, 2020.
- V. Boekelheide and K. Fahrenhol, J. Am. Chem. Soc., 1961, 83, 458; see also, K. Matsumoto, T. Uchida, T. Kato, M. Toda, K. Aoyama and H. Konishi, Heterocycles, 1990, 31, 593.
- 6 K. Matsumoto, T. Uchida, K. Aoyama, M. Nishikawa and T. Kuroda, J. Heterocycl. Chem., 1988, 25, 1793.
- 7 For the corresponding reactions of acetylenes, see: S. Kanemasa, S. Kobira and S. Kujigaeshi, Heterocycles, 1980, 14, 1107. W. D. Ollis, S. P. Stanforth and C. A. Ramsden, J. Chem. Soc.,
- 8 Perkin Trans. 1, 1989, 945
- 9 M. Regitz, Chem. Rev., 1990, 90, 191 and references cited therein.
- 10 For this terminology, see: H. Balli and M. Zeller, Helv. Chim. Acta, 1983, 66, 2135. The official nomenclature for this ring system is 4,9b-diaza-2-phosphacyclopenta[c,d]phenalene.
- 11 K. Karaghiosoff and A. Schmidpeter, Phosphorus Sulfur, 1988, 36, 217; see also, K. Karaghiosoff, in Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990, p. 463ff.
- 12 W. Rösch, T. Facklam and M. Regitz, Tetrahedron, 1987, 43, 3247.

1122