Aldol Reaction of Enol Acetates and Lactols with \boldsymbol{N}-Chlorosuccinimide and Tin(ı) Chloride. Diastereoselective Synthesis of Disubstituted Cyclic Ethers

Yoshiro Masuyama,* Yumiko Kobayashi and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan
Lactols reacted with enol acetates by a Lewis acid reagent, derived from N -chlorosuccinimide and $\operatorname{tin}(11)$ chloride, to produce 2-acetonyl cyclic ethers diastereoselectively.
N-Chlorosuccinimide (NCS)/tin(11) chloride/alcohol reagents can be used in the aldol reaction of isopropenyl acetate with aldehydes to produce 4-alkoxybutan-2-ones. ${ }^{1}$ The key steps of this reaction are the formation of alkoxytrichlorotins having Lewis acidity, followed by formation of hemiacetals from the alkoxytrichlorotins and aldehydes. We tried to apply NCS/ SnCl_{2} reagent to the aldol reaction of enol esters with cyclic hemiacetals (lactols), cyclic tautomers of ω-hydroxy aldehydes. Lactols react in two ways with carbon nucleophiles in the presence of a Lewis acid; one is as with ω-hydroxy aldehyde, ${ }^{2}$ the other is via cyclic oxycarbenium ion. ${ }^{3,4}$ We report here the selective aldol reaction of enol acetates and lactols proceeding by the cyclic oxycarbenium ion mode: the formation of cyclic oxycarbenium ions from lactols and NCS/ SnCl_{2}.

An aldol reaction of 2-hydroxy-5-pentyltetrahydrofuran (1;

Scheme 1 Reagents and conditions: lactol 1 (1 mmol), enol acetate 2 (2 mmol), $\mathrm{SnCl}_{2}(2 \mathrm{mmol}), \mathrm{NCS}(2 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}),-30-5^{\circ} \mathrm{C}$

Scheme 2 Reagents and conditions: ω-hydroxy aldehyde 4 (1 mmol), isopropenyl acetate (2 mmol), $\mathrm{SnCl}_{2}(2 \mathrm{mmol}), \mathrm{NCS}(2 \mathrm{mmol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}), 5^{\circ} \mathrm{C}, 20 \mathrm{~min}$
$n=1, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{5} \mathrm{H}_{11}$) and isopropenyl acetate $\left(2, \mathrm{R}^{3}=\right.$ $\mathrm{Me}, \mathrm{R}^{4}=\mathrm{H}$) was investigated with $\mathrm{SnX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$ and NCS (or NBS) under various conditions. Using SnCl_{2} and NCS in dichloromethane at $-30-5{ }^{\circ} \mathrm{C}$ led to the formation of 2-acetonyl-5-pentyltetrahydrofuran in good yields ($80-88 \%$, diastereoisomer ratio; $60: 40$). The aldol reaction of other lactols 1 ($n=1$ and 2) with enol acetates 2 proceeded under the same conditions as those of $1\left(n=1, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ to produce cyclic ethers 3 (Scheme 1). Several representative results are summarized in Table 1 . In the reaction of fivemembered lactols, the substituent on position 3 influenced the addition (diastereoselectivity) more strongly than that on position 5 (entries $1-12$). The reaction of a 5 -substituted sixmembered lactol exhibited high diastereoselectivity, in contrast with that of five-membered lactols (entries 13 and 14). ω Hydroxy aldehydes 4 also reacted with $2\left(R^{3}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{H}\right)$ in the presence of $\mathrm{NCS} / \mathrm{SnCl}_{2}$ via internal hemiacetalization ${ }^{1}$ to produce 2 -acetonyl cyclic ethers 5 diastereoselectively. These results suggest that this reaction proceeded via the formation of tin alkoxide of lactol, followed by that of cyclic oxycarbenium ion.

Received, 24th February 1994; Com. 4/01129E

References

1 Y. Masuyama, Y. Kobayashi, R. Yanagi and Y. Kurusu, Chem. Lett., 1992, 2039.
2 K. Tomooka, T. Okinaga, K. Suzuki and G. Tsuchihashi, Tetrahedron Lett., 1987, 28, 6335.
3 M. D. Lewis, J. K. Cha and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 4976.

4 K. Tomooka, K. Matsuzawa, K. Suzuki and G. Tsuchihashi, Tetrahedron Lett. 1987, 28, 6339.
5 E. L. Eliel, M. Manoharan, K. M. Pietrusiewicz and K. D. Hargrave, Org. Magn. Reson., 1983, 21, 94.

Table 1 Aldol reaction of lactols and enol acetates with $\mathrm{NCS} / \mathrm{SnCl}_{2}{ }^{\alpha}$

Entry	\mathbf{R}^{1}	$\begin{aligned} & \text { Lactol } 1 \\ & \mathbf{R}^{2} \end{aligned}$	n		\mathbf{R}^{4}	$T^{\circ} \mathrm{C}$	Yield of 3 (\%)	Diastereoisomer ratio ${ }^{b}$
1	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	1	Me	H	5	82	42:58
2	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	1	Me	H	-10	88	40: 60
3	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	1	Me	H	-30	80	41 : 59
4	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	1	Ph	H	5	26	43:57
5	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	1	$\left(\mathrm{CH}_{2}\right)_{4}$		5	51	$-$
6	H	Me	1	Me	H	5	43	47 : 53
7	H	Ph	1	Me	H	5	44	50: 50
8	$\mathrm{C}_{6} \mathrm{H}_{13}$	H	1	Me	H	5	98	19:81
9	$\mathrm{C}_{6} \mathrm{H}_{13}$	H	1	Me	H	-20	86	20:80
10	$\mathrm{C}_{6} \mathrm{H}_{13}$	H	1	Ph	H	5	94	10:90
11	$\mathrm{C}_{6} \mathrm{H}_{13}$	H	1	$\left(\mathrm{CH}_{2}\right)_{4}$		5	45	$-$
12	Me	H	1	Me	H	5	40	27:73
13	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	2	Me	H	5	64	11:89 ${ }^{\text {d }}$
14	H	$\mathrm{C}_{5} \mathrm{H}_{11}$	2	Me	H	-20	72	2:98 ${ }^{\text {d }}$
15	$\mathrm{C}_{5} \mathrm{H}_{11}$	H	2	Me	H	5	60	30:70

[^0]
[^0]: "The reaction was almost complete after adding NCS for 20 min . ${ }^{b}$ The stereochemistry (syn and anti) of the diastereoisomers was not confirmed. The ratio was determined by $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (JEOL GX-270) and GC (PEG 20M capillary column, $0.25 \mathrm{~mm} \times 30 \mathrm{~m}$). c The diastereoisomer ratio was not confirmed. ${ }^{d}$ Anti isomer was found to be major by ${ }^{13} \mathrm{C}$ NMR. See ref. 5 .

