An Unprecedented DBU–MeOH Promoted One-pot γ -Arylidenation of Cyclic β -Ketoesters by a Directed γ -Aldol Reaction and Dehydration Sequence

Marie-Hélène Filippini and Jean Rodriguez*

Laboratoire de Synthèse Réactivité en Organique (Reso) associé au CNRS no. 1411, Centre de St-Jérôme, D12 13397 Marseille Cedex 20, France

Cyclic β -ketoesters 1 undergo, in a one-pot process, an unprecedented DBU–MeOH promoted selective γ -arylidenation with aldehydes 2, by a directed γ -aldol reaction and dehydration sequence, to afford stereoselectively synthetically valuable cycloalkenones 3 in good yields.

In conjunction with ongoing studies in our laboratory on the reactivity of carbanions derived from β -dicarbonyl compounds, we have recently shown the usefulness of cascade transformations initiated by the Michael addition of β -ketoesters to α , β -unsaturated electrophiles.¹ In this paper, we describe an unprecedented one-pot γ -arylidenation of cyclic β -ketoesters **1** with aldehydes **2**. by a 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) directed γ -aldol reaction and dehydration sequence, leading to synthetically valuable cycloalkenones **3**.

Whereas the directed γ -alkylation of β -dicarbonyl derivatives is well documented,^{2,3} the related selective γ -alkylidenation has received little attention. To our knowledge, there is no precedent for the direct preparation of hitherto unknown

Scheme 1 Reagents and conditions: 1 equiv. DBU, MeOH, room temp. to reflux, 4–24 h, 34–98%

Table	1	Preparation	of	ethylenic	cvcloalkanones	3
Iunic	-	reparation	U 1	entyrenie	e je roumanomes	~

β-Ketoester 1	Aldehyde 2	t/h	Product 3	Yield (%)	
a	a	24 <i>a</i>	a	66	
b	Ь	4 ^b	b	71	
с	с	6 ^b	с	34	
d	đ	2 ^b	d	70	
е	e	36	е	98	
f	f	24 ^b	f	50	
g	g	19a	g	75	
h	h	24ª	ĥ	86	

^{*a*} Room temp. ^{*b*} Reflux.

Scheme 2 Proposed mechanism for the cascade transformation

carboxycycloalkenones **3** starting from simple cyclic β -ketoesters and aldehydes,² while in the acyclic version, the aldol type condensation of dianions derived from acetoacetates, combined with subsequent dehydration⁴ or dehydrosulfenylation⁵ and the Wadsworth–Emmons coupling of γ -phosphono β -ketothioesters⁶ constitute interesting approaches.

It is of interest to note that related unsaturated cyclic ketones are useful intermediates in the synthesis of natural products⁷ and have also been used as precursors for potentially bioactive pyrimidine derivatives⁸ and *trans*-disubstituted cycloalkanols.⁹ On the other hand, the presence of three contiguous reactive centres such as two electrophilic and one nucleophilic sites should confer to intermediates **3** very interesting synthetic potentialities.

Our new one-pot γ -functionalization proceeds smoothly under mild conditions with various aldehydes 2 in MeOH in the presence of 1 equiv. of DBU (Scheme 1). The generality of the method is summarized in Table 1. Good unoptimized yields of 3 are generally obtained under the standard conditions reported above.[†] Compounds 3 exist as a mixture of keto and enol tautomers but only one stereoisomer having the *E* configuration is formed.¹⁰

The overall sequence is probably initiated by a reversible α -aldol reaction allowing the formation of the enolate, which reacts irreversibly with aldehydes **2** to give after dehydration the stable α -carboxy substituted, stereodefined and optically active ethylenic ketones such as **3e** (Scheme 2).‡ Experimental evidence for this pathway is provided by the structural elucidation of **3e**.§ The ¹H NMR spectrum shows a characteristic signal for the vinylic proton at δ 6.92 as a triplet with ^{4}J = 2.6 Hz, which after a selective irradiation of the allylic proton (δ 2.42, 1H, br d, J 17.7 Hz) appears as a doublet with ^{4}J = 2.6 Hz. These results are in complete agreement with the proposed structure for **3e**. An alternative mechanism involving a 1,3-ester shift through a cyclobutane-1,3-dione monohemiketal intermediate¹¹ leading to **4** can thus be ruled out.

The use of DBU in MeOH seems to be crucial since only starting materials are recovered with K_2CO_3 or NaOMe even after refluxing in MeOH for prolonged time. Moreover the condensation of ethyl cyclohexan-2-onecarboxylate with benzaldehyde is ineffective after 24 h in refluxing THF containing 1 equiv. of DBU and a very slow reaction of methyl cyclopentan-2-onecarboxylate is observed in the same conditions leading to **3d** in only 10% isolated yield.¶ Finally, when ethyl β -ketoesters **1f–h** are used, a complete transesterification occurs leading exclusively to methyl esters **3f–h**.

Received, 29th July 1994; Com. 4/04680C

Footnotes

† All new compounds gave satisfactory analytical and/or spectral data.

 \ddagger We are grateful to one of the referees for fruitful comments on the mechanistic pathway.

§ **3e**: (Enol form) white crystals, $R_f = 0.57$ (diethyl ether–pentane, 1/1); IR (neat) v/cm⁻¹ 3054, 2985, 1708, 1655, 1650, 1601, 1264; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (3H, d, *J* 6.6 Hz), 2.42 (1H, br d, *J* 17.7 Hz), 3.04–3.15 (2H, m), 3.81 (3H, s), 6.92 (1H, t, *J* 2.6 Hz), 7.23–7.27 (1H, m), 7.36 (2H, t, *J* 7.5 Hz), 7.44 (2H, br d, *J* 7.5 Hz), 10.05 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 33.2, 36.2, 51.4, 110.9, 124.8, 127.7, 128.7 (2CH), 129.3 (2CH), 137.3, 136.8, 169.5, 170.7 ¶ Obtained after 5 days at room temp. or 2 days at reflux.

References

1 N. Ouvrard, P. Ouvrard, J. Rodriguez and M. Santelli, J. Chem. Soc., Chem. Commun., 1993, 571; M. H. Filippini, J. Rodriguez and M. Santelli, J. Chem. Soc., Chem. Commun., 1993, 1647; M. H. Filippini, PhD Thesis, University of Marseilles.

- 2 For an exhaustive review, see: E. M. Kaiser, J. D. Petty and P. L. A. Knutson, *Synthesis*, 1977, 509; For a comprehensive review on the directed aldol reaction, see: T. Mukaiyama, *Org. React. (N.Y.)*, 1982, **28**, 203.
- 3 D. Gravel and M. Labelle, Can. J. Chem., 1985, 63, 1874.
- 4 S. N.Huckin and L. Weiler, Can. J. Chem., 1974, 52, 2157.
- 5 B. M. Trost and R. A. Kunz, J. Org. Chem., 1974, 39, 2648.
- 6 S. V. Ley and P. R. Woodward, Tetrahedron Lett., 1987, 28, 345.
- 7 For selected reference, see: M. E. Jung, Y. Cr. Pan and M. W. Hart, *Nat. Prod. Rep.*, 1988, 1; G. Iwasaki, M. Sano, M. Sodeoka, K. Yoshida and M. Shibasaki, *J. Org. Chem.*, 1988, **53**, 4864; R. F. Abdulla and K. F. Fuhr, *J. Org. Chem.*, 1978, **43**, 4248.
- 8 J. Deli, T. Lorand, D. Szabo and A. Földesi, *Pharmazi*, 1984, **39**, 539.
- 9 K. Koch and J. H. Smitrovich, Tetrahedron Lett., 1994, 35, 1137.
- 10 Identified by comparison of their spectral data with those of the literature values: J. K. Crandall, J. P. Arrington and J. Hen, J. Am. Chem. Soc., 1967, 89, 6208; T. Nakano, S. Irifune, S. Umano, A. Inada, Y. Ishii and M. Ogawa, J. Org. Chem., 1987, 52, 2239.
- 11 A. Habi and D. Gravel, Tetrahedron Lett., 1994, 35, 4315.