Synthesis of 2,4-Diaza-4-deoxypodophyllotoxin, a New Analogue of Podophyllotoxin possessing Antitumour Activity

Yukio Hitotsuyanagi,*a Yoichi Naka, ${ }^{\text {a Keiji Yamagami, }}{ }^{\text {b }}$ Akihiro Fujii ${ }^{\text {b }}$ and Tetsuya Tahara ${ }^{\text {a }}$
a Research Laboratories, Yoshitomi Pharmaceutical Industries Ltd., 955 Yoshitomi-cho, Chikujo-gun, Fukuoka 871, Japan
${ }^{\text {b }}$ Research Laboratories, Yoshitomi Pharmaceutical Industries Ltd., Koyata, Iruma-shi, Saitama 358, Japan
2,4-Diaza-4-deoxypodophyllotoxin 4 and its cis analogue 14 are synthesised stereoselectively from 3,4-methylenedioxyaniline 5, and show significant activity against vincristine-resistant P-388 leukaemia in vivo.

Podophyllotoxin 1 has been known to possess antitumour activity and is still considered an important lead for antineoplastic agents. ${ }^{1}$ Pre vious efforts to find a less toxic analogue of $\mathbf{1}$ have been conducted mainly through derivatization from 1. Recently 2-azapociophyllotoxin analogues, such as 2 and 3, have been synthesised by several groups ${ }^{2}$ and attract much interest since sone of them showed pronounced in vivo antitumour activity comparable to that of $1 .{ }^{2 b}$ However no 2-aza analogue incorporating an additional heteroatom at position 4 or other positions of ing C has been reported thus far due to the probable chemical instability and accordingly due to less accessibility. Thus, we designed and synthesised 2,4-diaza-4-deoxypodophyllotoxin $\mathbf{4}$ since it was expected that introduction of a nitrogen atom at this position should little alter the whole stereostructure, but might pose significant influence upon its biologica properties through increasing the electron density on ring B.

3,4-Methylenedioxyaniline 5 was reacted with benzaldehyde, and successive reduction of the resultant imine with sodium borohydride in a mixture of solvents, EtOH-THF-acetic acid (AcOH), gave N-benzyl-3,4-methylenedioxyaniline 6 (bp $186-189^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$) in 82% yield (Scheme 1). Compound 6 was converted by boron trichloride (1.0 equiv.) and triethylamine (1.15 equiv.) in 1,2 -dichloroethane at $0{ }^{\circ} \mathrm{C}$ to room temperature for 20 h into the N-benzyl-3,4-methylenedioxyanilinodichloroborane $7,{ }^{3}$ which on treatment with 3,4,5-trimethoxybenzaldehyde (1.0 equiv.) and triethylamine (1.15 equiv.) at room temperature for 3 h gave the benzhydrol 9 in 38% yield from 6 after the hydrolysis of the boracyclic intermediate 8. The alcohol 9 was reacted with ethyl carbamate (5 equiv.) in polyphosphate ester (PPE) ${ }^{4}$-THF ($1: 4$) to give the N-benzhydrylurethane $10\left(\mathrm{mp} 204-205^{\circ} \mathrm{C}\right)$ in 66% yield. The urethane $\mathbf{1 0}$ was condensed with glyoxylic acid monohydrate (1.2 equiv.) in refluxing $\mathrm{THF} \dagger$ for 1 h to give the tetrahydroquinazolinecarboxylic acid 11, which, without purification, was reduced with borane prepared in situ from sodium borohydride and boron trifluoride etherate in THF to afford the 3-hydroxymethyl derivative $12\left(\mathrm{mp} 147-149^{\circ} \mathrm{C}\right.$) in 88% yield from 10 as a single stereoisomer. We could not determine its relative stereochemistry at this stage. Sodium methoxide treatment of $\mathbf{1 2}$ in refluxing MeOH effected the cyclization to form the oxazolidone $13\left(\mathrm{mp} 217-218^{\circ} \mathrm{C}\right)$ in 97% yield, and successive debenzylation using palladium on carbon (Pd / C) under H_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-MeOH-AcOH (6:3:1) afforded 14 (mp $\left.249-250^{\circ} \mathrm{C}\right) \ddagger$ in 95% yield. The relative stereochemistry of 14

between $\mathrm{C}-1$ and $\mathrm{C}-3$ was established to be a cis relation by the observation of 2.2% enhancement of NOE between 1-H (δ 5.47) and 3-H ($\delta 5.09$).

Scheme 1 Reagents and conditions: i, benzaldehyde (1.1 equiv.), benzene, Dean-Stark, reflux, $1 \mathrm{~h} ; \mathrm{NaBH}_{4}$ (0.5 equiv.), EtOH-THF$\mathrm{AcOH}(60: 10: 1)$, room temp., $1 \mathrm{~h}(82 \%)$; ii, BCl_{3} (1.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.15 equiv.), 1,2 -dichloroethane, $0{ }^{\circ} \mathrm{C}$ to room temp., 20 h ; iii, 3,4,5-trimethoxybenzaldehyde (1.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.15 equiv.), room temp., 3 h ; iv, $\mathrm{NH}_{4} \mathrm{OH}$ (38% from 6); v, ethyl carbamate (5 equiv.), PPE-THF ($1: 4$), room temp., $1 \mathrm{~h}(66 \%)$; vi, $\mathrm{OHC}-\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.2 equiv.), THF, reflux, 1 h ; vii, $\mathrm{NaBH}_{4}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, THF, room temp., 72 h (88% from 10); viii, MeONa, MeOH, reflux, 6 h (97%); ix, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{AcOH}$ (6:3:1), room temp., 9 h (95\%); $\mathrm{x}, \mathrm{CHCl}_{3}-$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3: 1), 50^{\circ} \mathrm{C}, 12 \mathrm{~h}(99 \%)$

Scheme 2

Surprisingly, treatment of $\mathbf{1 4}$ with a $3: 1$ mixture of CHCl_{3} and trifluoroacetic acid at $50^{\circ} \mathrm{C}$ for 12 h afforded exclusively the desired trans analogue $4\left(\mathrm{mp} 223-224^{\circ} \mathrm{C}\right.$)§ in 99% yield, the stereochemistry of which was determined by the observation of NOE (4.7%) between $2^{\prime}-\mathrm{H}(\delta 6.54)$ and $3-\mathrm{H}(\delta 4.96)$, and further supported by the upfield shift $[\delta 66.9(14) \rightarrow \delta 61.4$ (4)] of the $\mathrm{C}-3$ resonance in ${ }^{13} \mathrm{C}$ NMR. ${ }^{5}$

This exclusive conversion from the cis analogue 14 to the trans analogue $\mathbf{4}$ can be rationalized by considering the intermediates 15a and/or 15b generated through path a or b shown in Scheme 2 and the relative thermodynamic stability between 4 and 14. The cis analogue 14 should suffer $\mathrm{A}^{(1,2)}$ strain ${ }^{6}$ between the carbonyl oxygen atom of the oxazolidone and the pseudo-equatorially oriented trimethoxyphenyl group at $\mathrm{C}-1$, but in the trans analogue 4 this strain is relieved by the $\mathrm{C}-1$ substituent adopting a pseudo-axial position. II

A goal of development of new antineoplastic drugs is to obtain molecules lacking cross resistance with classical agents. ${ }^{7}$ Analogues $\mathbf{4}$ and 14 showed significant activity against vincristine-resistant P-388 leukaemia (P-388/VCR) in vivo.||

Received, 15th September 1994; Com. 4/05632I

Footnotes

\dagger Upon this condensation, the use of THF as a solvent proved to be important. Other solvents such as MeOH or propan- 2 -ol resulted in the decrease of diastereoselectivity.
\ddagger 14: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz} ; J / \mathrm{Hz}\right) 3.80(3 \mathrm{H}, \mathrm{s}), 3.82(6 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchange), $4.12(1 \mathrm{H}, \mathrm{dd}, J 8.4,8.4), 4.57(1 \mathrm{H}, \mathrm{dd}, J 8.4,7.1)$, $5.09(1 \mathrm{H}, \mathrm{brt}, J 7.7), 5.47(1 \mathrm{H}, \mathrm{s}), 5.86(1 \mathrm{H}, \mathrm{d}, J 1.3), 5.88(1 \mathrm{H}, \mathrm{d}, J 1.3)$, $6.34(1 \mathrm{H}, \mathrm{s}), 6.42(1 \mathrm{H}, \mathrm{s})$ and $6.57(2 \mathrm{H}, \mathrm{s}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 56.1$ (q), 60.5 (d), 60.8 (q), 66.9 (d), 67.4 (t), 99.9 (d), 101.3 (t), 104.6 (d), 107.6 (d), 119.3 (s), 135.6 (s), 137.5 (s), 137.6 (s), 143.4 (s), 147.3 (s), 153.3 (s) and 154.9 (s).
§ 4: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 2.48\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchange), $3.81(6 \mathrm{H}, \mathrm{s})$, $3.84(3 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, \mathrm{dd}, J 9.4,1.5), 4.37(1 \mathrm{H}, \mathrm{dd}, J 9.4,5.9), 4.96(1 \mathrm{H}$, dd, $J 5.9,1.5), 5.76(1 \mathrm{H}, \mathrm{s}), 5.87(1 \mathrm{H}, \mathrm{d}, J 1.3), 5.90(1 \mathrm{H}, \mathrm{d}, J 1.3), 6.29$ $(1 \mathrm{H}, \mathrm{s}) 6.39(1 \mathrm{H}, \mathrm{s})$ and $6.54(2 \mathrm{H}, \mathrm{s}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 55.5(\mathrm{~d})$, 56.3 (q), $60.8(\mathrm{q}), 61.4$ (d), 68.6 (t), 98.7 (d), 101.1 (t), 105.9 (d), 108.1 (d), 112.5 (s), 136.3 (s), 137.8 (s), 138.0 (s), 142.2 (s), 147.8 (s), 153.4 (s) and 156.8 (s).

I Koga et al. reported the cis/trans isomerization of 2 via a benzhydryl cation under strongly acidic conditions. ${ }^{2 b}$ We cannot completely deny the possibility that this type of reaction might occur in 14 instead of, or concomitantly with, the reaction shown in Scheme 2.
$\|$ The maximum T / C values for $\mathbf{4}$ and 14 against $\mathrm{P}-388 / \mathrm{VCR}$ in vivo (CDF_{1} mice, ip-ip, days $1-5$) are 152% (at $10 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{~d}^{-1}$ level) and 137% (at $5 \mathrm{mg} \mathrm{kg}{ }^{-1} \mathrm{~d}^{-1}$ level), respectively. Podophyllotoxin 1 showed marginal activity ($T / C=125 \%$) upon this experiment.

References

1 D. C. Ayres and J.D. Loike, Lignans. Chemical, biological and clinical properties, CUP Cambridge, 1990.
2 (a) H. L. Pearce, N. J. Bach and T. L. Cramer, Tetrahedron Lett., 1989, 30, 907; (b) K. Tomioka, Y. Kubota and K. Koga, Tetrahedron Lett., 1989, 30, 2953; J. Chem. Soc., Chem. Commun., 1989, 1622; Tetrahedron, 1993, 49, 1891; (c) J. Van der Eycken, J.-P. Bosmans, D. Van Haver, M. Vandewalle, A. Hulkenberg, W. Veerman and R. Nieuwenhuizen, Tetrahedron Lett., 1989, 30, 3873; J.-P. Bosmans, J. Van der Eycken, M. Vandewalle, A. Hulkenberg, R. Van Hes and W. Veerman, Tetrahedron Lett., 1989, 30, 3877; (d) H. Itokawa, Y. Hitotsuyanagi and K. Takeya, Heterocycles, 1992, 33, 537; (e) P. Lienard, J. Royer, J.-C. Quirion and H.-P. Husson, Tetrahedron Lett., 1991, 32, 2489; P. Lienard, J.-C. Quirion and H.-P. Husson, Tetrahedron, 1993, 49, 3995; (f) F. Reteurtre, J. Madalengoitia, A. Orr, T. J. Guzi, E. Lehnert, T. Macdonald and Y. Pommier, Cancer Res., 1992, 52, 4478; (g) J. S. Madalengoitia and T. L. Macdonald, Tetrahedron Lett., 1993, 34, 6237; (h) S. W. McCombie, J. R. Tagat, W. A. Metz, D. Nazareno and M. S. Puar, Tetrahedron, 1993, 49, 8073.

3 T. Sugasawa, T. Toyoda, M. Adachi and K. Sasakura, J. Am. Chem. Soc., 1978, 100, 4842.
4 M. P. Cava, M. V. Lakshmikantham and M. J. Mitchell, J. Org. Chem., 1969, 34, 2665.
5 H. Beierbeck, J. K. Saunders and J. W. ApSimon, Can. J. Chem., 1977, 55, 2813.
6 F. Jhonson, Chem. Rev., 1968, 68, 375.
7 L. M. Hollingshead and D. Faulds, Drugs, 1991, 42, 690.

