## Tris(2,6-diisopropylphenylimido) Complexes of Molybdenum: Kinetic Accessibility of the d<sup>o</sup> Mo(=NR)<sub>3</sub> Functional Group

## Donald L. Morrison and David E. Wigley\*

Carl S. Marvel Laboratories of Chemistry, Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA

The unprecedented tris(imido) complex of molybdenum,  $[Li(THF)_4][Mo(NAr)_3CI]$  (Ar = C<sub>6</sub>H<sub>3</sub>Pri<sub>2</sub>-2,6), is the kinetic product of the reaction between [Mo(NAr)<sub>2</sub>Cl<sub>2</sub>(THF)<sub>2</sub>] and 2 equiv. of LiNHAr in THF; [Li(THF)<sub>4</sub>][Mo(NAr)<sub>3</sub>CI] and byproduct H<sub>2</sub>NAr react further to form the thermodynamic product [Mo(NAr)<sub>2</sub>(NHAr)<sub>2</sub>].

Recent advances in transition-metal imido chemistry<sup>1</sup> include the generation of reactive M=NR ligands that can activate the C–H bonds of methane,<sup>2</sup> engage in cycloaddition chemistry,<sup>3</sup> or function as [NR] transfer reagents.<sup>4</sup> One common feature of these reactive compounds is a coordination sphere containing *multiple*  $\pi$ -donor ligands,<sup>5,6</sup> a property that has aroused interest in ' $\pi$  loaded' multiple imido complexes.<sup>5c</sup> Despite the well established bis [Mo(=NR)<sub>2</sub><sup>1,7,8</sup>] and tetrakis {[Mo(=NR)<sub>4</sub>]<sup>2–</sup>}<sup>9</sup> imido complexes of d<sup>0</sup> molybdenum, the tris(imido) functional group Mo(=NR)<sub>3</sub> has not been reported. Herein we describe the kinetic accessibility of this group and demonstrate its reactivity towards both nucleophiles and electrophiles.

Upon reacting *extremely pure*  $[Mo(NAr)_2Cl_2(THF)_2]^{\dagger}$  (1, Ar =  $C_6H_3Pr_{1_2}-2,6$ ) with 2 equiv. of LiNHAr in THF (15 min), bright red-orange crystals of  $[Li(THF)_4][Mo(NAr)_3Cl]$  2 are isolated after appropriate work-up, Scheme 1.<sup>‡</sup> This tris(imido) anion constitutes the kinetic product of the reaction, since byproduct  $H_2NAr$  reacts with  $[Mo(NAr)_3Cl]^-$  over a period of hours (in THF) to minutes (in pentane) to afford stable  $[Mo(NAr)_2(NHAr)_2]$  3 and LiCl. This feature is established by reacting isolated 2 with 1 equiv. of  $H_2NAr$  which affords golden-yellow  $[Mo(NAr)_2(NHAr)_2]$  3 in near quantitative yield, therefore reaction time is crucial for the successful isolation of 2.

The reaction  $[Li(THF)_4][Mo(NAr)_3Cl] 2 + H_2NAr$  $[Mo(NAr)_2(NHAr)_2]$  3 addresses the question of how the tris(imido) complex 2 arises. One can envision the 1 + 2 LiNHAr  $\rightarrow$  2 reaction proceeding by either: (i) the formation of intermediate [Mo(NAr)2(NHAr)2] which transfers an amido  $\alpha$ -H *intra*molecularly to afford [Mo(NAr)<sub>3</sub>(NH<sub>2</sub>Ar)], followed by displacement of  $H_2NAr$  by  $Cl^-$ ; or (*ii*) by the intermediacy of nascent [Mo(NAr)<sub>2</sub>(NHAr)Cl] {cf. [W(NAr)<sub>2</sub> (NEt<sub>2</sub>)Cl]<sup>6</sup>} that undergoes an intermolecular deprotonation by the second equiv. of [NHAr]-. Clearly, thermodynamics dictate that the reaction  $[Mo(NAr)_3Cl]^- + H_2NAr \rightleftharpoons [Mo(NAr)_2(NHAr)_2] +$ Cl- is strongly favoured to the right. The fact that prolonged heating of solutions of [Mo(NAr)<sub>2</sub>(NHAr)<sub>2</sub>] in the presence of excess PMe<sub>2</sub>Ph does not produce any detectable amounts of either H<sub>2</sub>NAr or a tris(imido) complex [Mo(NAr)<sub>3</sub>(PMe<sub>2</sub>Ph)] (vide infra) is consistent with this view. These experiments support the notion that [Mo(NAr)<sub>3</sub>Cl]<sup>-</sup> arises via an intermolecular deprotonation of 'Mo(NAr)<sub>2</sub>(NHAr)Cl' as suggested above in pathway (ii) and provide precedent for the steps illustrated in eqns (1)-(4) for the formation of [Mo(NAr)<sub>3</sub>Cl]-2 and its conversion to the thermodynamic product [Mo-(NAr)<sub>2</sub>(NHAr)<sub>2</sub>] 3. We note the influence of a bulky aryl substituent such as C<sub>6</sub>H<sub>3</sub>Pr<sup>i</sup><sub>2</sub>-2,6 in determining both the course of these reactions and the kinetic stability of 2, since attempts to



Scheme 1 Reagents and conditions i, 2LiNHAr in THF; ii, H<sub>2</sub>NAr in benzene; iii, MeLi in THF-Et<sub>2</sub>O; iv, C<sub>5</sub>H<sub>6</sub> in THF; v, excess PMe<sub>3</sub>, benzene; vi, excess PhNCO in pentane

$$[Mo(NAr)_2Cl_2(THF)_2] + [NHAr]^- \rightarrow [Mo(NAr)_2(NHAr)Cl] + Cl^- \quad (1)$$
  
[Mo(NAr)\_(NHAr)Cl] + [NHAr]^-

$$[Mo(NAr)_2(NHAr)CI] + [NHAr]^- \rightarrow [Mo(NAr)_3CI]^- + H_2NAr \quad (2)$$

 $[Mo(NAr)_{3}Cl]^{-} + H_{2}NAr \rightarrow [Mo(NAr)_{3}(NH_{2}Ar)] + Cl^{-} \quad (3)$ 

$$[Mo(NAr)_3(NH_2Ar)] \rightarrow [Mo(NAr)_2(NHAr)_2]$$
(4)

Although an X-ray structure determination of **2** has been carried out, poor crystal quality limited the precision of the analysis. However, overall  $C_{3\nu}$  symmetry analogous to the structure of  $[W(NAr)_3Cl]^{-6}$  is apparent. Under threefold symmetry, one combination of the imido nitrogen  $p\pi$  orbitals has  $a_2$  symmetry, for which there is no corresponding metal orbital.<sup>1</sup> Therefore two of the total number of electrons available from three  $[NR]^{2-}$  ligands are consigned to occupy a ligand-based, non-bonding  $a_2$  molecular orbital comprised of N(2p) orbitals lying perpendicular to the  $C_3$  axis, *i.e.* the  $\pi_{\perp}$  set, Fig. 1. Thus,  $\pi$ -loaded<sup>5c,6</sup> [Mo(NAr)\_3L] complexes are formally 18-electron species (not 20), which further restricts any axial ligand L to donating a maximum of two electrons to the metal to attain saturation.

The chloride ion in  $d^0$  [Mo(NAr)<sub>3</sub>Cl]<sup>-</sup> 2 is subject to nucleophilic displacement, thus purple crystals of [Mo- $(NAr)_{3}(PMe_{3})$ ] 4 can be obtained in high yield from the reaction of 2 with excess PMe<sub>3</sub>. Similarly, MeLi reacts with [Li(THF)<sub>4</sub>][Mo(NAr)<sub>3</sub>Cl] (in THF-Et<sub>2</sub>O) to provide orange crystals of [Li(THF)<sub>4</sub>][Mo(NAr)<sub>3</sub>Me] 5. The imido ligands of [Mo(NAr)<sub>3</sub>Cl]<sup>-</sup> and [Mo(NAr)<sub>3</sub>(PMe<sub>3</sub>)] are also susceptible to electrophilic attack as indicated in Scheme 1. Thus, cycloaddition of a Mo=NAr moiety of 4 occurs upon its reaction with PhNCO to afford metallacyclic [Mo{NArC(O)NPh}-(NAr)<sub>2</sub>(PMe<sub>3</sub>)] 6. The active proton of cyclopentadiene monomer is also observed to attack an imido ligand of 2 to provide  $[Mo(\eta^5-C_5H_5)(NAr)_2(NHAr)]$  7 as dark red crystals. Since the imido dianion [NR]<sup>2-</sup> and the cyclopentadienyl anion [C<sub>5</sub>H<sub>5</sub>]<sup>-</sup> may both be described as  $1\sigma$ ,  $2\pi$  donors, [Mo( $\eta^{5}$ - $C_5H_5$ )(NAr)<sub>2</sub>(NHAr)] constitutes one of a series of M(1 $\sigma$ , 2 $\pi$ )<sub>3</sub> compounds with threefold  $1\sigma$ ,  $2\pi$  orbital symmetry. Evidence



Fig. 1 Illustration of the non-bonding  $a_2$  MO composed of the  $\pi_\perp$  set of N(2p) orbitals

has been presented that supports this combination of three  $1\sigma_{,2}\pi$  ligands contributing two electrons less than the maximum possible.<sup>1,5c</sup> Therefore electronic restrictions appear to prevent the amido ligand in [Mo( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)(NAr)<sub>2</sub>(NHAr)] from  $\pi$  donating to this metal centre. Consistent with this notion is the chemical shift ( $\delta$  5.65 in C<sub>6</sub>D<sub>6</sub>) of the rather shielded NHAr proton that can be compared to the more typical value of  $\delta$  8.03 (C<sub>6</sub>D<sub>6</sub>) for the NHAr protons of [Mo(NAr)<sub>2</sub>(NHAr)<sub>2</sub>] **3**.

These experiments suggest one way to activate imido ligands towards cycloaddition reactions:  $\pi$  loading restricts the metalnitrogen bond order to less than three, induces highly polar  $M^{\delta+}=N^{\delta-}$  linkages, and renders the imido ligand particularly susceptible to electrophilic cycloadditions.

Acknowledgement is made to the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy (DE-FG03-93ER14349) for support of this research. We also thank Dr Michael A. Bruck for the structural study of [Li(THF)<sub>4</sub>][Mo(NAr)<sub>3</sub>Cl]. D. L. M. is the Carl S. Marvel Fellow, 1994–1995.

Received, 20th September 1994; Com. 4/05734A

## Footnotes

 $\dagger$  [Mo(NAr)<sub>2</sub>Cl<sub>2</sub>(THF)<sub>2</sub>] has been prepared in 95% yield by a modification of the method developed by Schrock and coworkers.<sup>7</sup> Osborn and coworkers report<sup>8</sup> the preparation of the monokis THF adduct and we note that [Mo(NAr)<sub>2</sub>Cl<sub>2</sub>(THF)<sub>2</sub>] can be converted to [Mo(NAr)<sub>2</sub>Cl<sub>2</sub>(THF)] upon extensive washing with pentane and reformed from [Mo(NAr)<sub>2</sub>Cl<sub>2</sub>(THF)] in the presence of THF.  $\ddagger$  All new compounds gave analytical and <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data in accord with their assigned structures.

## References

- 1 D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239.
- 2 C. C. Cummins, S. M. Baxter and P. T. Wolczanski, J. Am. Chem. Soc., 1988, 110, 8731; T. R. Cundari, J. Am. Chem. Soc., 1992, 114, 10557.
- 3 P. L. McGrane, M. Jensen and T. Livinghouse, J. Am. Chem. Soc., 1992, 114, 5459; P. J. Walsh, F. J. Hollander and R. G. Bergman, Organometallics, 1993, 12, 3705.
- 4 E. W. Harlan and R. H. Holm, J. Am. Chem. Soc., 1990, 112, 186;
  J. T. Groves and T. Takahashi, J. Am. Chem. Soc., 1983, 105, 2073;
  P. J. Walsh, A. M. Baranger and R. G. Bergman, J. Am. Chem. Soc., 1992, 114, 1708.
- 5 (a) D. S. Williams and R. R. Schrock, Organometallics, 1993, 12, 1148; (b) D. N. Williams, J. P. Mitchell, A. D. Poole, U. Siemeling, W. Clegg, D. C. R. Hockless, P. A. O'Neil and V. C. Gibson, J. Chem. Soc., Dalton Trans., 1992, 739; (c) S. R. Huber, T. C. Baldwin and D. E. Wigley, Organometallics, 1993, 12, 91.
- 6 Y.-W. Chao, P. M. Rodgers, D. E. Wigley, S. J. Alexander and A. L. Rheingold, J. Am. Chem. Soc., 1991, 113, 6326, and references therein.
- 7 H. H. Fox, K. B. Yap, J. Robbins, S. Cai and R. R. Schrock, *Inorg. Chem.*, 1992, **31**, 2287.
- 8 N. Bryson, M.-T. Youinou and J. A. Osborn, *Organometallics*, 1991, **10**, 3389.
- 9 A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 2753; A. A. Danopoulos, G. Wilkinson, M. B. Hursthouse and B. Hussain, Polyhedron, 1989, 8, 2947.