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y-Chalcogen-substituted prop-2-ynyl cations are generated by the reactions of diethyl acetals 1 and 2 with BF3-Et20 
and react with various mild nucleophiles without isomerisation to allenyl cations to afford the prop-2-ynylated 
products 3a-e and 5a-c in good yields. 

Isomerisation of the prop-2-ynyl group to allenyl group is well 
recognised and widely employed in the synthesis of allenic 
compounds. 1 Therefore, prop-2-ynylation is an important 
functionalisation to be solved. a-Prop-2-ynyl ketones are 
versatile intermediates and are converted into chromanols,2 
other heterocycles,3 cyclohexenones,4 and 1,4-diketones.5 Di- 
rect coupling of ke tone enolate with prop-2-ynyl halides or 
tosylates has rarely been reported because of the isomerisation 
to allenes. Nicholas et al. explored an elegant method using 
(prop-2-ynyl)Co2(CO)6+ complexes6 which react not only with 
trimethylsilyl enol et hers,7 but also with allylsilanes,g and alkyl- 
and alkynyl-alumin ium reagents.9 Dicobalt octacarbonyl is 
highly toxic and air sensitive, and all operations with this 
reagent should be carried out in an inert atmosphere. If prop- 
2-ynyl cations can he generated by a method without dicobalt 
octacarbonyl, this novel method will be useful and convenient 
for prop-2-ynylation. Since the Lewis acid mediated reaction of 
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Table 1 Reactions of ychalcogen-substituted prop-2-ynyl cations with 
nucleophiles 

Entry Acetal Nucleophile Products (% yields) 

3 1 

OEt 

prop-2-ynyl aldehyde acetals with nucleophiles has not been 
reported, we examined reactions of prop-2-ynyl cations gen- 
erated from y-chalcogen-substituted propynal diethyl acetals 
and report here the reactions of prop-2-ynyl cations with the 
mild nucleophiles. y-Chalcogen-substituted propynal diethyl 
acetals 1 and 2 were prepared by the reaction of propynal diethyl 
acetal with ethylmagnesium bromide followed by treatment 
with benzenesulfenyl or benzeneselenenyl chloride (Scheme 
1). 

y-Selenopropynal diethyl acetall reacted with trimethylsilyl 
enol ethers in the presence of BF,-Et,O to give a-alkoxyprop- 
2-ynyl ketones 3a and 3b accompanied by the alkynyl ether 4a, 
which would be formed by the hydride abstraction (entry 1). 
The addition reactions of 1 with various nucleophiles were 
performed and their results are shown in Table 1. The reaction 
of 1 with allyltrimethylsilane afforded the allylated seleno- 
alkyne 3d in good yield, while the reaction of 1 with 
trimethylsilylnitrile gave a complex mixture. Although the 
(prop-2-ynyl)-Co2(CO)6+ complex reacted with trialkyl- 
aluminium reagents, the yields of the alkylated products were 
low? The chalcogen-substituted propynal diethyl acetal 1 
reacted with triethylaluminium or diethylzinc to give the 
ethylated product 3d in high yield (entries 4 and 5). Alkynyla- 
tion using diethyl octynyl aluminium provided the octynylated 
product 3e (20%) and the ethylated product 3d (25%) (entry 6), 
and reaction with trioctynylaluminium produced the product 3e 
in low yield. 

y-Phenylthiopropynal diethyl acetal2 reacted similarly with 
the soft nucleophiles in the presence of BF,-Et,O (entries 
8-10). The prop-2-ynylated products 5a, 5b and 5c were 
obtained in good yields. Reactions of other prop-2-ynyl 
aldehyde diethyl acetals bearing an alkyl, a phenyl, a silyl and 
a stannyl groups at the terminal acetylenic carbon were fruitless 
and gave the complex mixtures. This indicates that y-substituted 
chalcogen atoms stabilised the prop-2-ynyl cations and have an 
effect on the a-selective prop-2-ynylations. 

Table 2 Synthesis of y-chalcogen-substituted propynal mono- and 
diheteroacetals at room temp. 

Entry Acetal Conditions Products (% yields) 
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We also examined the nucleophilic addition reactions with 
other soft nucleophiles such as B(SePh)3,10 TMSSePh," and 
33~i~AISePh.12 Reaction of acetall with 2 equiv. of Bui2A1SePh 
gave 0,Se-heteroacetal 6 (Table 2, entry 1) and reaction with 
Bui2A1SPh afforded O,S-heteroacetal7 in good yield (entry 3). 
The structures of these compounds could be satisfied by the 
analytical and spectral data, When 4 equiv. of Bui2AlSPh was 
used, no 0,s-heteroacetal but dithioacetals 8 and 10 were 
obtained from y-phenylseleno- 1 and y-phenylthiopropynal 2, 
respectively. The diselenoacetal 9 was similarly obtained from 
2 and 4 equiv. of Bui2AlSePh in 46% yield. We made attempts 
to prepare y-phenylselenopropynal diselenoacetal, but could not 
obtain it in a pure form. These heteroacetals would be utilised as 
a source of prop-2-ynyl cations stabilized by a chalcogen 
atom. 13 Since the alkynyl chalcogenmoieties can be easily 
transformed to other functional groups,14 y-chalcogen-substi- 
tuted prop-2-ynyl compounds will become useful intermediates 
for organic synthesis. 
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