Efficient Cleavage of Carbon Graphene Layers by Oxidants

Kuo Chu Hwang

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

The graphene layers at carbon nanotube cap regions are efficiently cleaved by several oxidants (*e.g.*, KMnO₄, OsO₄ and RuO₄) in acidic solution at 100 °C, but not by stronger oxidants, such as $K_2Cr_2O_7-H^+$ and $H_2O_2-H^+$.

The basic structure of fullerenes and carbon nanotubes is of carbon graphene layers(s), composed of five- and six-membered rings and C=C double bonds.¹ Up to now, all reported reactions concerning fullerenes and carbon nanotubes occur on the outer surface of the carbon graphene layer by addition to C=C double bond(s).² The 'inside' graphene surface chemistry should be as rich as the 'outside' surface chemistry. In addition, the internal hollow space of fullerene cages and carbon nanotubes is expected to act as good host containers. To explore this chemistry, the graphene cage has first to be broken. Cleavage of the fullerene cage has been suggested theoretically,3 while opening of carbon nanotube graphene layers at the end-cap region was reported by treating nanotubes with CO₂ or lead as well as with O₂ at 400-800 °C.⁴ The yields are rather low (1-20%), and the mechanisms of these processes are not clear. Herein, we report efficient cleavage (up to 91%) of multiple graphene layers of carbon nanotubes at the end-cap region by various oxidants (KMnO4, OsO4, RuO4, etc.) in aqueous solution at 100 °C for 1 h. The mechanism of the cap-opening processes is most probably via oxidative cleavage of the C=C double bonds and/or conversion of C=C double bonds to vicinal diols followed by oxidative cleavage of diols. The oxidative cleavage process was also found to be kinetically controlled.

Various oxidants were systematically studied for the ability of cleaving graphene layers of carbon nanotubes (see Table 1). Two powerful oxidants, $K_2Cr_2O_7$ -H⁺ and H_2O_2 -H⁺ were found to be unable to cause opening of carbon nanotube end caps under our experimental conditions.[†] When KMnO₄ was used (entry 3, Table 1), $\approx 64\%$ [‡] of nanotubes were observed to have open ends. As shown in Fig. 1, a carbon nanotube was converted to a nanostraw with both ends opened. In acidic solution, MnO₄⁻ was reduced to generate MnO₂ (2MnO₄⁻ + 2H⁺ \rightarrow MnO₂(s) + 3/2 O₂ + H₂O, E_0 = +1.41 V vs. SCE). Therefore, the cap-opening processes should be considered in terms of both MnO₄⁻ and MnO₂. In neutral solution, the amount of MnO₂

Table 1 Reagents, conditions, and yields for nanotube cap opening

		the second se			
	Reagents		$E_{\rm red}/V_{\rm SCE}$	Conditions T/°C (t/min)	% Cap opening ^a
1	$K_2Cr_2O_7^b$	10% H ₂ SO ₄	1.04	100 (30)	0
2	H_2O_2	10% H ₂ SO ₄	1.49	100 (30)	0
3	KMnO ₄ ^b	10% H ₂ SO ₄	1.20	100 (30)	64 (62:110)
4	KMnO ₄ ^b	(neutral)	0.29	100 (30)	15 (79:14)
5	KMnO ₄ ^b	MnO ₂ -	0.29	100 (30)	59 (59:86)
6	KMnO ₄ ^b	MnO_2^{c}	0.29	100 (60)	85 (16:88)
7	KMnO ₄ ^b	$CrO_3^{\overline{b}}$	0.29	100 (30)	44 (51:41)
8	KMnO ₄ ^b	$NaIO_4^d$	0.29	100 (30)	< 5
9	OsCl3 ^e	$NaIO_4^d$	0.56	100 (30)	61 (18:28)
10	OsCl ₃ e	NaIO ₄ ^d	0.56	100 (60)	81 (8:35)
11	RuCle	$NaIO_4^d$	0.71	100 (30)	66 (8:15)
12	RuCl ₃ e	$NaIO_4^d$	0.71	100 (60)	91 (9:94)
13	RuCl ₃ e	NaIO4 ^d	0.71	100 (90)	All destroyed

^{*a*} The ratio in parentheses is the number of closed *vs.* open nanotube end caps observed under TEM. The confidence limit is $\pm 5\%$. ^{*b*} 0.2 mol dm⁻³, ^c In excess the MnO₂ was generated by heating KMnO₄ in 20% H₂SO₄, and collected by centrifugation and washed with distilled water prior to use. ^{*d*} 70 mg in 0.5 ml solution, partly in solid form which dissolves upon heating. ^{*e*} 75 mmol dm⁻³; upon heating, OsO₄ (RuO₄) was produced (see refs. 5 and 6, respectively). At the end of the reaction, the solid OsO₂ (RuO₂) was reduced to soluble Os³⁺ (Ru³⁺) by addition of acidic ascorbate solution.

produced *in situ* is strongly reduced due to the very inefficient reduction process of MnO_4^- , and only $\approx 15\%$ of carbon nanotubes were observed to have one open end (entry 4, Table 1). When MnO_2 was added externally to the neutral MnO_4^- solution, 59% of carbon nanotubes were observed to have open ends (entry 5, Table 1), indicating the crucial role of MnO_2 in the nanotube end-cap opening processes. Prolonged heating (1 h) of the neutral MnO_4^- – MnO_2 –nanotube suspension solution affords 85% cap opening (entry 6, Table 1). As shown in Fig. 2, several large nanotubes with multiple graphene layers were cleaved open at the end-cap region.

Combinations of KMnO₄ with CrO₃ or NaIO₄ were also able to open the nanotubes end caps, albeit at lower percentages (entries 7, 8, Table 1). Two other powerful oxidants examined were OsO₄ and RuO₄, which are known to be able to oxidatively cleave a single olefin bond in small organic molecules.^{5,6} Both oxidants were able to cleave the graphene layers at carbon nanotube end caps with efficiencies compatible to the KMnO₄ system (entries 9–13, Table 1). As shown in Fig. 3, the large nanotube (treated by RuO₄) has wider open ends than the diameter of the internal hallow space, and both ends are ragged due to oxidative damage. Upon heating for 60 min in RuO₄ solution, 91% of nanotube end caps are opened; and *ca.* 83% of nanotubes have both ends opened. Although having highest efficiency, the RuO₄ system is not considered as the best system

Fig. 1 Transmission electron microscope image of nanotubes treated with $KMnO_4{-}10\%$ H_2SO_4 solution at 100 °C for 30 min

Fig. 2 TEM image of nanotubes, treated with a $0.2 \text{ mol } dm^{-3} \text{ KMnO}_4$ neutral solution in the presence of excess externally added MnO₂ at 100 °C for 60 min

174

since the majority of nanotubes were destroyed and much fewer nanotubes were observed under TEM. Further heating for 90 min results in complete destruction of the nanotubes.

These open-ended carbon nanotubes processed by the above oxidants share one significant common feature, that is, a larger internal diameter near the open end than within the tube (see Figs. 1-3). This indicates two important aspects: the entrance of the oxidant aqueous solution into the internal hollow space of open ended nanotubes,§ and a higher tendency of oxidation of the internal graphene layers (walls) than the outer layers. The former observation confirms theoretical predictions that polar molecules near the open end can induce polarization along the long axis of nanotubes, and move into the internal hollow space.⁷ The latter observation can be rationalized by the previous conclusion derived from both theoretical calculations⁸ and the experimental observation^{1,9} that local strain is one of the major driving forces for chemical reactions. The inner-most layers of a nanotube have larger curvature (higher strain) than the outer layers, and therefore are more readily oxidatively cleaved.

The structure of carbon graphene layers is composed of adjoining C=C double bonds. Therefore, the cleavage mechanism by the above oxidants is believed to follow similar patterns as in small olefin molecules (*vide infra*). In the case of RuO₄, the C=C double bonds on graphene layers first form a ruthenium ester⁶ adduct followed by C-C bond cleavage to form two ketone functional groups (Scheme 1).

For KMnO₄¹⁰ and OsO₄,⁵ the C=C double bonds at the nanotube end caps are first converted to vicinal diols *via* formation of the manganese¹⁰ (or osmium⁵) esters, followed by oxidative cleavage of the vicinal diols by MnO₂,¹¹ CrO₃¹² or IO_4^{-13} (Scheme 2).

This study clearly shows that RuO_4 , OsO_4 and MnO_4 --- MnO_2 systems are able to consecutively cleave several

Fig. 3 TEM image of nanotubes treated with 75 mmol $dm^{-3}\ RuCl_{3}-$ 0.65 mol $dm^{-3}\ NaIO_4$ at 100 °C for 60 min

adjoining olefin bonds and graphene layers with high efficiencies.

While $K_2Cr_2O_7$ -H⁺ and H_2O_2 -H⁺ are stronger oxidants they are unable to cleave graphene layers indicating that the oxidative cleavage process is not thermodynamically, but kinetically controlled.

In summary, several oxidants (KMnO₄, OsO₄, RuO₄, *etc.*) were shown to be able to consecutively cleave adjoining olefin bonds and graphene layers on the carbon nanotube cap regions. The oxidation process is believed to occur *via* conversion of C=C bonds to diols followed by oxidative cleavage, and is kinetically controlled. The results presented above clearly indicate the feasibility of opening windows(s) on fullerene cages,³ and the methods applied here provide a new avenue for the study of 'inside cage' fullerene chemistry. Currently we are actively pursuing this possibility.

The author acknowledges financial support from the National Science Council of the Republic of China.

Received, 12th October 1994; Com. 4/06247G

Footnotes

† In a typical experiment, *ca.* 1 mg of nanotubes (MER Corporation, length 0.1–100 μ m, diameter 3–50 nm) was put in 0.5 ml of 0.2 mol dm⁻³ oxidant–10% H₂SO₄ aqueous solution, and ultrasonicated for 5 s, followed by heating in an oil-bath at 100 °C for 30–60 min. The solution was then cooled to room temp., and the carbon nanotubes were collected by centrifugation, washed with distilled water and methanol. A drop of nanotube–methanol suspension solution was then placed on microscope (TEM) measurements. The TEM images were obtained from a Hitachi (model: H-600-3) operated at 75 kV.

‡ Quoted percentages are the ratio of the numbers of closed vs. open nanotube end caps observed under TEM.

§ This is in sharp contrast to a previous report⁴ that molten lead atoms are unable to enter the hollow internal space of carbon nanotubes.

References

- 1 J. M. Hawkins and A. Meyer, Science, 1993, 260, 1918.
- 2 R. Taylor and R. M. Walton, *Nature*, 1993, **363**, 685; A. Hirsch, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 1138.
- 3 R. L. Murry and G. R. Scuseria, Science, 1994, 263, 791.
- 4 P. M. Ajayan and S. Iijima, *Nature*, 1993, **361**, 333; S. C. Tsang, P. J. F. Harris and M. L. H. Green, *Nature*, 1993, **362**, 520; P. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki and H. Hiura, *Nature*, 1993, **362**, 522.
- 5 M. Schroder, Chem. Rev., 1980, 80, 187.
- 6 L. M. Berkowttz and P. N. Rylander, J. Am. Chem. Soc., 1958, 80, 6682; J. A. Caputo and R. Fuchs, *Tetrahedron Lett.*, 1967, 47, 4729; D. G. Lee and J. A. Spitzer, J. Org. Chem., 1976, 41, 3644; P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936.
- 7 M. R. Pederson and J. Q. Broughton, *Phys. Rev. Lett.*, 1992, **69**, 2689.
- 8 R. C. Haddon, Acc. Chem. Res., 1988, 21, 243; Science, 1993, 261, 1545.
- 9 J. M. Hawkins, A. Meyer and M. A. Solow, J. Am. Chem. Soc., 1993, **115**, 7499; J. M. Hawkins, M. Nambu and A. Meyer, J. Am. Chem. Soc., 1994, **116**, 7642.
- H. Vorbrueggen and C. Djerassi, J. Am. Chem. Soc., 1962, 84, 2990;
 W. A. Waters, Q. Rev. Chem. Soc., 1958, 12, 277.
- 11 G. Ohloff and W. Giersch, Angew. Chem., Int. Ed. Engl., 1973, 12, 401.
- D. F. Tavares and J. P. Borger, *Canad. J. Chem.*, 1966, **44**, 1323; I. Nongkynrih and M. K. Mahanti, *J. Org. Chem.*, 1993, **58**, 4925; J. R. Henry and S. M. Weinreb, *J. Org. Chem.*, 1993, **58**, 4745.
- 13 F. D. Gunstone and P. J. Sykes, J. Chem. Soc., 1962, 3058; H. Vorbrueggen and C. Djerassi, J. Am. Chem. Soc., 1962, 84, 2990.