Synthesis and Crystal Structure of the First 6a-Thiathiophthen Metal Complex $[Mo(CO)_5$ PPh₂ $]_2(\mu$ -C₅H₂S₃)

Kuang-Hway Yih, Ying-Chih Lin,* Gene-Hsiang Lee and Yu Wang

Department of Chemistry, National Taiwan University, Taiwan 106, Republic of China

The first 6a-thiathiophthen metal complex was prepared by treating $M(CO)_{5}[PPh_{2}CS_{2}CH_{2}C=CH]$ with a catalytic amount of secondary amine or tertiary amine; the structure of the 6a-thiathiophthen molybdenum complex is confirmed by an X-ray diffraction analysis.

With their unusually long S-S distances and possible aromatic properties of the two fused five-membered rings, the 6athiathiophthen **(3,3a,4-trithiopentalene)** derivatives1 have attracted considerable attention. Methods for the synthesis of 6athiathiophthen² and arylthio- or alkylthio-derivatives³ using various thionation reagents such as S , H_2S and P_2S_5 have been reported. Furthermore, much work has been done on the bonding,⁴ structure,⁵ reactions⁶ and electron density deformation⁷ studies on 6a-thiathiophthen and its derivatives. However, no 6a-thiathiophthen metal complex has been reported. Here we report the high yield synthesis and the structure determination of the first 6a-thiathiophthen metal complex, which was prepared from the metal complex containing the diphenyl(Sprop-2-ynyl-dithioformato)phosphine ligand.⁸

Treatment of $M(CO)_{5}[\overrightarrow{PPh}_{2}(\overrightarrow{C}S_{2}CH_{2}C\equiv CH)]$ (M = Mo, 1a; W, 1b) with a catalytic amount of Et_3N in CH_2Cl_2 yields the 6athiathiophthen metal complexes $[M(CO)_5PPh_2]_2(\mu-C_5H_2S_3)$ (M = Mo, **2a;** W, **2b)** at room temperature (Scheme 1). Complex **2a** is isolated as a red microcrystalline powder by recrystallization from hexane–CH₂Cl₂ in *ca*. 85% yield. The spectroscopic† and analytical data of **2a** are in agreement with the formulation. The FAB mass spectrum of **2a** shows a base peak at *mlz* 721,

corresponding to $[MoPPh_2]_2(\mu-C_5H_2S_3)^+$, formed by loss of the ten CO groups from **2a.** The IR spectrum of **2a** shows two terminal carbonyl stretches at 2073 and 1924 cm^{-1} , a typical pattern for a $LM(CO)_{5}$ unit in octahedral geometry. The ¹H NMR spectrum of 2a exhibits a doublet at δ 7.90 $(3J_{P-H} = 7.2)$ Hz) attributed to the two equivalent methyne protons, and the corresponding ¹³C NMR signal is a doublet at δ 177.95 (² J_{P-C} $= 11.3$ Hz). The low field ¹H chemical shift is regarded as evidence for a strong ring current. The ¹³C NMR resonance of the 3a-carbon exhibits a triplet at δ 177.21 (3 J_{P-C} = 8.3 Hz). The ¹H and ¹³C NMR spectra clearly imply C_{2v} symmetry in 2a. The molecular structure of this unusual complex **2a** is confirmed by an X-ray diffraction study.‡ An ORTEP drawing of **2a** is shown in Fig. 1. The coordination geometry about the two molybdenum atoms can be described as distorted octahedral. Two metal atoms were bridged by two phosphorus atoms connected by a 6a-thiathivphthen unit. The two **S-S** distances $[2.318(2)$ and $2.330(2)$ Å] in complex **2a** are significantly longer than the expected **S-S** single bond lengths (2.05 A) but considerably shorter than sum of the sulfur van der Waals radii (3.7 Å) .⁹ Interestingly, in the crystal, **2a** does not exhibit C_{2v} symmetry and the $P_2C_5H_2S_3$ unit is not planar. To our

Fig. 1 ORTEP drawing for the complex $[Mo(CO)_5PPh_2]_2(\mu-C_5H_2S_3)$, **2a.** Selected bond distances (Å) and angles (°) are as follows: Mo(1)-P(1) 2.528(2), Mo(2)-P(2) 2.540(2), P(1)-C(1 1) 1.855(4), P(2)-C(15) 1.847(4), C(1 **1)-S(** 1) 1.689(4), C(13)-S(2) 1 .%36(4), *C(* 15)-S(3) 1.689(4), C(1 1)- C(12) 1.352(5), C(12)-C(13) 1.415(5), C(13)-C(14) 1.399(5), C(14)-C(15) 1.371(5), S(l)-S(2) 2.318(2), S(2)-S(3) 2.330(2); C(1l)-P(1)-Mo(1) 1 18, 88(13), C(15)-P(2)-Mo(2) 121.54(13), S(1)-S(2)-S(3) 178.32(6).

Scheme 1 *Reagents and conditions: i, Et₃N* or Pr¹₂NH or Et₂NH or F⁻, CH₂Cl₂, 25 °C, 10 min; ii, RNH₂ (R = PhCH₂, Et), CH₂Cl₂, 25 °C, 1 min; iii, BuⁿLi or Bu^tOK or PhNH₂, THF, 25 °C, 1 h

knowledge, complex 2a is the first example of metal-derivative of 6a-thiathiophthen.

In order to study the role of Et_3N in the formation of $2a$, other amines and Bu_4NF were used to replace Et_3N in the reaction. Complexes la and lb were reacted with secondary amine ($\Pr^i_2\hat{N}H$, Et_2NH) or $Bu^n{}_4NF$ to give 2a and 2b, respectively, both in high yield. The rate of formation of 2 depends on the amine used and decreases in the order $Et_3N > Pr¹_{2}NH > Et_2NH$ $>$ Buⁿ₄NF. No reaction was observed when 1 was reacted with BunLi, ButOK or PhNH2. But the reactions of **1** with several primary aliphatic amines $(RNH_2; R = PhCH_2, Et)$ give $M(CO)_{5}PPh_{2}CSNHR$ (M = Mo, R = PhCH₂, Et; 3a-b; M = W, $R = PhCH_2$, Et; 4a-b) and HC \equiv CCH₂SH in high yield, Scheme 1. Interestingly, complex **3** (or **4)** is not the precusor that leads to 2. On the basis of the above-mentioned experiments, one can conclude that secondary or tertiary amines catalyse the formation of 2 but primary amines or strong bases do not. To probe the origin of the two methyn protons of 2a (from the terminal or the methylene of $1a$), ²H-labelling experiment was carried out. Treatment of the terminally labelled [²H₁]1a with Et₃N afforded 2a with *no* ²H-labelling. In addition, when the reaction was monitored by the $31P$ and $1H$ NMR spectra, complex 2a was observed as the only product (yield 95% from integration of the 31P NMR spectrum) and no intermediate was observed. Attempts to trap possible intermediates by separate addition of PPh_3 , CS_2 , TCNE, MeI or cyclopentadiene into the reaction of 1 with Et₃N failed to produce any product other than 2. The metal carbonyl fragment is crucial for the formation of 2, since treatment of the analogous organic species $Et_2NC(S)SCH_2C\equiv CH$ with Et_3N or PhCH2NH2 resulted in no reaction under the same reaction conditions. In the absence of R_3N , dimerization of 1 gave a fivemembered ring consisting of a C=S unit and the propynyl moiety.10

The reactivity of the 6a-thiathiophthen metal complexes and the mechanism for their formation are currently under investigation.

We thank the National Science Council of Taiwan, the Republic of China for support.

Received, 2nd November 1994; Com. 4106708H

Footnotes

t *Selected spectroscopic data:* lH (300 MHz) and l3C{ lH) (75 MHz) NMR (298 K, CDCl₃, relative to SiMe₄, multiplicity, assignment, J in Hz) ³¹P (121.5 MHz) NMR (H₃PO₄ external standard).

1a: IR (CH₂Cl₂, $v_{\text{CO}}/(\text{cm}^{-1})$: 2075(m), 1942(vs). ³¹P NMR: δ 76.76. **1a**: IR (CH₂Cl₂, v_{CO}/cm^{-1}): 2075(m), 1942(vs). ³¹P NMR: δ 76.76. 10
¹H NMR: δ 2.18 (t, 1H, \equiv CH, ${}^4J_{H-H}$ = 2.68), 3.98 (d, 2H, S-CH₂, ${}^4J_{H-H}$

224 **J. CHEM. SOC., CHEM. COMMUN., 1995**

= 2.68), 7.47 (m, 6H, Ph), 7.67 (m, 4H, Ph). 13C NMR: 6 26.36 **(S-**CH₂), 72.60 (\equiv CH), 75.77 (C \equiv CH), 128.55 (d, *meta*-C of Ph, ${}^{3}J_{\rm P-C}$ = 9.60), 131.03 (s, *para-C* of Ph), 133.69 (d, *ortho-C* of Ph, $2J_{P-C}$ = 11.77), 133.67 (d, *ipso-C* of Ph, J_{P-C} = 30.70), 205.35 (d, CO, $2J_{P-C}$ = 8.48), 209.84 (d, *CS*₂, *J*_{P-*C*} = 26.10). MS (FAB, NBA, *m*/z): 539 (M⁺), 483 (M⁺ - 2CO).

 $[2H_1]$ **1b** (2 H 98%): IR (CH₂Cl₂, v_{CO}/cm^{-1}): 2072(m), 1940(vs). ³¹P NMR: δ 59.95 ($J_{\text{W-P}}$ = 237.0). ¹H NMR: δ 3.96 (s, 2H, S-CH₂), 7.45 (m, 6H, Ph), 7.69 (m, 4H, Ph).

2a: IR (KBr, v_{CO}/cm^{-1}): 2073(m), 1924(vs). ³¹P NMR: δ 46.59. ¹H NMR: δ 7.41 (m, 6H, Ph), 7.52 (m, 4H, Ph), 7.90 (d, 2H, CH, $^{3}J_{\text{P-H}}$ = $(d, CH, {}^{2}J_{P-C} = 11.3), 205.22 (d, cis-CO, {}^{2}J_{P-C} = 9.0), 209.67 (d, PCs,$ (d, CH, ²J_{P-C} = 11.3), 205.22 (d, cis-CO, ²J_{P-C} = 9.0), 209.67 (d, PCS, J_{P-C} = 24.8). MS (FAB, NBA, *m*/z): 1000.9 (M⁺), 972.9 (M⁺ - CO), 945 (M⁺ - 2CO), 916.9 (M⁺ - 3CO), 721.0 (M⁺ - 10CO). 7.2). ¹³C NMR: δ 128–134 (Ph), 177.21 (t, HCC, ${}^{3}J_{\text{P-C}} = 8.3$), 177.95

2b: IR (KBr, v_{CO}/cm^{-1}): 2068(m), 1931(vs). ³¹P NMR: δ 28.54 $(J_{W-P} = 249.6)$. ¹H NMR: δ 7.41 (m, 6H, Ph), 7.52 (m, 4H, Ph), 7.91 $3J_{P-C}$ = 8.3), 177.30 (d, CH, $2J_{P-C}$ = 11.3), 196.80 (d, cis-CO, $2J_{P-C}$ = ${}^{3}J_{\text{P-C}}$ = 8.3), 177.30 (d, CH, ${}^{2}J_{\text{P-C}}$ = 11.3), 196.80 (d, cis-CO, ${}^{2}J_{\text{P-C}}$ = 9.0). MS (FAB, NBA, *m*/z): 1176.2 (M⁺), 1148.0 (M⁺ – CO), 1064.0 (d, 2H, CH, $3J_{P-H} = 8.0$). ¹³C NMR: δ 128-134 (Ph); 177.21 (t, HCC, 9.0). MS (FAB, NBA, m/z): 1176.2 (M⁺), 1148.0 (M⁺ – CO), 1064.0 (M⁺ – 4CO), 1036.8 (M⁺ – 5CO), 1008.2 (M⁺ – 6CO), 952.1 (M⁺ – SCO), $925.2 (M^2 - 9CO)$, $896.2 (M^2 - 10CO)$.

3a: ³¹P NMR: δ 63.47. ¹H NMR: δ 4.87 (s, 2H, CH₂), 7.14-7.65 (m, 15H, Ph). MS (FAB, NBA, *mlz):* 571.4 (M+), 543.4 (M+ - CO).

3.68 (q, 4H, CH₂, J_{H-H} = 7.3), 2.42 (b, 1H, NH), 7.43-7.67 (m, 10H, Ph). **3b**: ³¹P NMR: δ 62.38. ¹H NMR: δ 1.14 (t, 6H, CH₃, J_{H-H} = 7.3),

4a: ³¹P NMR: δ 47.14 ($J_{\text{W-P}}$ = 256.4). ¹H NMR: δ 4.86 (s, 2H, CH₂), 7.29–7.68 (m, 15H, Ph), 7.91 (d, 2H, CH, ³J_{P-H} = 8.0). MS (FAB, NBA, *mlz):* 659.3 (M+), 631.3 (M+ - CO).

 J_{H-H} = 7.3), 3.95 (q, 4H, C H_2 , J_{H-H} = 7.3), 7.30–7.63 (m, 10H, Ph). **4b**: ³¹P NMR: δ 46.30 ($J_{\text{W-P}}$ = 257.6). ¹H NMR: δ 1.19 (t, 6H, CH₃,

 $\frac{1}{4}$ *Crystal data* for **2a**: C₃₉H₂₂O₁₀P₂S₃Mo₂, space group *P*¹, *a* = 9.042(7), $b = 15.175(6)$, $c = 16.554(8)$ Å, $\alpha = 112.02(4)$, $\beta =$ 96.38(4), γ = 92.92(4)°, $V = 2082.2(21)$ Å³, $Z = 2$, $D_{\text{caled}} = 1.596$ $g \text{ cm}^{-3}$, $\mu = 8.603 \text{ cm}^{-1}$, observed reflections 4298, $2\theta_{\text{max}} = 45.0^{\circ}$. An absorption correction has been carried out. The structure was solved by Patterson synthesis then refined *via* standard least-squares and difference Fourier techniques. Non-hydrogen atoms were refined by using anisotropic thermal parameters. Total number of parameters: 506. $R = 0.028, R_w = 0.029$; $\text{GOF} = 1.36, \Delta F = 0.51, -0.48 \text{ e A}^3$; Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 Y. Wang, **S.** K. Yeh, **S.** Y. Wu, C. T. Pai, *C.* R. Lee and K. J. Lin, *Acta Crystallogr., Sect. B: Struct. Sci.,* 1991,47, 298; L. K. Hansen and A. Hordvik, *Acta. Chem. Scand.,* 1973,27,4 1 1 ; Q. Shen and K. Hedberg, J. *Am. Chem. Soc.,* 1974, 96, 289.
- 2 R. Gleiter and **R.** Gygax, *Top. Curr. Chem.,* 1976, 63, **1.**
- 3 K. T. Potts, **S. A.** Nye and K. A. Smith, J. *Org. Chem.,* 1992, 57, 3895; **U.** Chiacchio, A. Corsaro, A. Rescifina, M. G. Testa and G. Purrello, *Heterocycles,* 1993, 36, 223; H. G. Marei and M. M. Mishrikey, *Phosphorus, Sulfur and Silicon,* 1992, 73, 229.
- 4 K. Maeda, *Bull. Chem. Soc. Japan,* 1961, 34, 785; R. Cimiraglia and H.-J. Hofmann, *J. Am. Chem. Soc.,* 1991, 113, 6449; A. **S.** Brown and **V.** H. Smith, J. *Chem. Phys.,* 1993, 99, 1837.
- *5* H. Behringer, M. Ruff and R. Wiedenmann, *Chem. Ber.,* 1964,97, 1732; A. Hordvik, E. Sletten and J. Sletten, *Acta Chem. Scand.,* 1966, **20,** 2001; R. J. **S.** Beer, D. Cartwright and D. Harris, *Tetrahedron Lett.,* 1967, 953.
- 6 R. **J. S.** Beer, D. Cartwright, D. Harris and R. J. Gait, *J. Chem. Soc. C,* 1971, 963; G. Duguay, D. H. Reid, K. 0. Wade and R. G. Webster, J. *Chem. SOC. C,* 1971, 2829.
- 7 Y. Wang, M. J. Chen and C. H. Wu, *Acta Ciystallogr., Sect. B: Struct. Sci.,* 1988, 44, 179; K. J. Lin and Y. Wang, J. *Phys. Chem.,* 1993, 97, 3176.
- 8 K. **H.** Yih, Y. C. Lin, M. C. Cheng and Y. Wang, J. *Chem. Soc., Chem. Commun.,* 1993, 1380.
- 9 L. Pauling, *The Nature of the Chemical Bond,* 3rd ed., Cornell University Press, New York, 1960.
- 10 K. H. Yih, Y. C. Lin, M. C. Cheng and Y. Wang, *Organometallics,* 1994, 13, 1561.